• 제목/요약/키워드: Noise prediction method

검색결과 647건 처리시간 0.027초

지표면의 반사특성을 고려한 환경소음 예측 (Prediction of Industrial Noise Propagation Subjected to Ground Effect)

  • 한상보
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.329-335
    • /
    • 2001
  • The analytical model of the ground wave can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. The effects of the ground surface and the wind can be formulated in terms of the ground coefficient and the noise source parameter. Upward and downward conditions can also be addressed by considering the direction of the wind. The ground coefficient and the noise source parameter are estimated using the measured noise levels of two points under particular environmental condition, and the noise levels of arbitrary points under the same environmental condition can be estimated. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF

FEM과 BEM을 이용한 한국형 고속전철의 전동소음 예측 (Prediction of Rolling Noise of Korean Train Express Using FEM and BEM)

  • 김관주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.555-564
    • /
    • 2001
  • Wheel-rail noise is normally classified into three catagories : rolling, squeal and impact noise. In this paper, rolling noise caused by the irregularity between a wheel and rail is analysed as follows: The irregularity between the wheel and rail is assumed as combination of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory, and then contact force between the wheel and rail is calculated. Vibration of the rail and wheel is calculated theoretically by receptance method or FEM depending on the geometry of wheel or rail for the frequency range of 100-5000Hz, important for noise generation. The radiation caused by those vibration is computed by BEM. To verify this analysis tools, rolling noise is calculated by preceding analysis steps using typical roughness data and it is compared with experimental rolling noise data. This analysis tools show reasonable results and used for the prediction of KTX rolling noise.

  • PDF

An Improved Secondary Path Modeling Method by Modified Kuo Model

  • Park, Byoung-Uk;Kim, Hack-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권1E호
    • /
    • pp.33-42
    • /
    • 2003
  • Kuo et al proposed an on-line method for an adaptive prediction error filter for improving secondary path modeling performance in the modeling method of the secondary path. This method have some disadvantages, namely having to use additive noise with the result that noise control performance is not good since it is focused on the estimated performance of the secondary path. In this paper, we proposes a modified Kuo model using gain control parameter and delay. It uses a reference signal for additive noise to improve the problems in the existing Kuo model.

유한요소법과 경계요소법을 이용한 한국형 고속전철의 전동소음 예측 (Prediction of Rolling Noise of a Korean High-Speed Train Using FEM and BEM)

  • 양윤석;김관주
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.444-450
    • /
    • 2000
  • Wheel-rail noise is normally classified into three catagories : rolling impact and squeal noise. In this paper rolling noise caused by the irregularity between a wheel and a rail is analysed as follows: The irregularity between the wheel and the rail is assumed as linear superposition of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory and then contact force between the wheel and the rail is calculated. vibration of the rail and the wheel is calculated theoretically by receptance method or FEM depending on the geometry of the wheel or the rail for the frequency range of 100-500 Hz important for noise generation. The radiation noise caused by those vibration response is computed by BEM To verify this analysis tools rolling noise is calculated by proposed analysis steps using typical roughness data and these results are compared with experimental rolling noise data. This analysis tools show reasonable results and finally used for the prediction of the Korean high speed train rolling noise.

  • PDF

Kirchhoff 근사 방법을 이용한 축소모델의 표적강도 예측 (Target Strength Prediction of Scaled Model by the Kirchhoff Approximation Method)

  • 김영현;주원호;김재수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.442-445
    • /
    • 2004
  • The acoustic target strength (TS) of submarine is associated with its active detection, positioning and classification. That is, the survivability of submarine depends on its target strength. So it should be managed with all possible means. An anechoic coating to existing submarine or changing of curvature can be considered as major measures to reduce the TS of submarine. It is mainly based on the prediction of its TS. Under this circumstances, a study on the more accurate numerical methods becomes big topic for submarine design. In this paper, Kirchhoff approximation method was adopted as a numerical tool for the physical optics region. Secondly, the scaled models of submarine were built and tested in order to verify its performance. Through the comparison, it was found out that the Kirchhoff approximation method could be good design tool for the prediction of TS of submarine.

  • PDF

CAE를 이용한 파워트레인의 가진력 해석 (Excitation Force Analysis of a Powertrain Based on CAE Technology)

  • 김성종;이상권
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.107-116
    • /
    • 2008
  • The excitation force of a powertrain is one of major sources for the interior noise of a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the power rain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using the experimental method for the reduction of vibration and noise. In order to solve this problem, the vibration of the power rain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts in a vehicle is investigated by using the experimental method based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a power rain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the power rain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.

점 압력 스펙트럼에 대한 준-이론 모델을 사용한 효율적이고 정확한 평판 뒷전 소음의 예측 (Efficient and accurate prediction of flat plate trailing edge noise using semi-analytic model for point pressure spectra)

  • 이광세;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.45-54
    • /
    • 2012
  • In order to predict trailing edge noise from a flat plate more effectively and accurately, the prediction algorithm based on semi-analytic model for point pressure spectrum is proposed. The semi-analytic model consists of empirical models for point pressure spectra and theoretical model to determine the boundary layer characteristics needed for the empirical models. The proposed methods are applied to predict the trailing edge noise of the flat plate located in the mean flow of speed 38 m/s, for which the measured data are available. In present study, six empirical models for point pressure spectra are utilized for the predictions of trailing edge noise and their prediction results are compared to the measured data. Through the analysis of these comparisons, it is revealed that the present method based on non-frozen formula using Efimtsov model and Smol'yakov-Tkachenko model can provide more accurate and efficient predictions of trailing edge noise.

  • PDF

점 압력 스펙트럼에 대한 준-이론 모델을 사용한 효율적이고 정확한 평판 뒷전 소음의 예측 (Efficient and Accurate Prediction of Flat Pate Trailing Edge Noise Using Semi-analytic Model for Point Pressure Spectra)

  • 이광세;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제22권6호
    • /
    • pp.524-534
    • /
    • 2012
  • In order to predict trailing edge noise from a flat plate more effectively and accurately, the prediction algorithm based on semi-analytic model for point pressure spectrum is proposed. The semi-analytic model consists of empirical models for point pressure spectra and theoretical model to determine the boundary layer characteristics needed for the empirical models. The proposed methods are applied to predict the trailing edge noise of the flat plate located in the mean flow of speed 38 m/s, for which the measured data are available. In present study, six empirical models for point pressure spectra are utilized for the predictions of trailing edge noise and their prediction results are compared to the measured data. Through the analysis of these comparisons, it is revealed that the present method based on non-frozen formula using Efimtsov model and Smol'yakov-Tkachenko model can provide more accurate and efficient predictions of trailing edge noise.

멀티로터형 무인항공기 프로펠러의 고효율 및 저소음 설계를 위한 공력 소음 예측 기법 개발 (Development of aerodynamic noise prediction technique for high efficiency and low noise design of unmanned aerial vehicle propeller)

  • 곽두영;이수갑
    • 한국음향학회지
    • /
    • 제36권2호
    • /
    • pp.89-99
    • /
    • 2017
  • 멀티로터형 무인항공기는 군사용 목적뿐 아니라 항공 촬영 및 무인 택배 수단 등 민간 산업까지 그 활용 범위를 넓혀가고 있다. 무인항공기의 보다 폭넓은 활용을 위해서는 추진체인 프로펠러의 공력 효율 개선과 소음의 저감을 위한 연구가 선행되어야 하며, 이는 주어진 환경에서 공력 성능 및 소음을 예측할 수 있는 기술이 바탕이 되어야만 가능하다. 본 연구에서는 소형 무인항공기 프로펠러를 대상으로 공력 및 소음 예측 기법을 개발하고, 실제 측정을 통한 결과와의 비교를 통해 검증하였다. 분당 회전수의 변화에 따른 추력 및 토크와 주어진 위치에서의 주파수 스펙트럼 예측에서 모두 예측 기법의 신뢰성을 확보하였으며, 이를 통해 프로펠러의 형상 설계에 기반이 될 수 있는 기틀을 마련하였다.

A Smoothing Method for Stock Price Prediction with Hidden Markov Models

  • Lee, Soon-Ho;Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.945-953
    • /
    • 2007
  • In this paper, we propose a smoothing and thus noise-reducing method of data sequences for stock price prediction with hidden Markov models, HMMs. The suggested method just uses simple moving average. A proper average size is obtained from forecasting experiments with stock prices of bank sector of Korean Exchange. Forecasting method with HMM and moving average smoothing is compared with a conventional method.

  • PDF