DOI QR코드

DOI QR Code

Development of aerodynamic noise prediction technique for high efficiency and low noise design of unmanned aerial vehicle propeller

멀티로터형 무인항공기 프로펠러의 고효율 및 저소음 설계를 위한 공력 소음 예측 기법 개발

  • 곽두영 (BK21 플러스 융합지식기반 창조형 기계항공인재 양성사업단) ;
  • 이수갑 (서울대학교 공학연구원)
  • Received : 2017.02.17
  • Accepted : 2017.03.29
  • Published : 2017.03.31

Abstract

Multi-rotor type UAV (Unmanned Aerial Vehicle)s are expanding their applications not only for military purposes but also for private industries such as aerial photography and unmanned delivery vehicles. For wider use of unmanned aerial vehicles, studies should be carried out to improve aerodynamic efficiency and reduce noise of propellers, which can be achieved based on techniques of predicting aerodynamic performance and noise in a given environment. In this study, aerodynamic and noise prediction techniques were developed for a small unmanned aerial vehicle propeller, and it was verified by comparing it with actual measurement results. Thrust and torque due to the change of r/min and the frequency spectral prediction at a given position secured the reliability of the prediction method, which provides a basis for the shape design of the propeller.

멀티로터형 무인항공기는 군사용 목적뿐 아니라 항공 촬영 및 무인 택배 수단 등 민간 산업까지 그 활용 범위를 넓혀가고 있다. 무인항공기의 보다 폭넓은 활용을 위해서는 추진체인 프로펠러의 공력 효율 개선과 소음의 저감을 위한 연구가 선행되어야 하며, 이는 주어진 환경에서 공력 성능 및 소음을 예측할 수 있는 기술이 바탕이 되어야만 가능하다. 본 연구에서는 소형 무인항공기 프로펠러를 대상으로 공력 및 소음 예측 기법을 개발하고, 실제 측정을 통한 결과와의 비교를 통해 검증하였다. 분당 회전수의 변화에 따른 추력 및 토크와 주어진 위치에서의 주파수 스펙트럼 예측에서 모두 예측 기법의 신뢰성을 확보하였으며, 이를 통해 프로펠러의 형상 설계에 기반이 될 수 있는 기틀을 마련하였다.

Keywords

References

  1. "Drone(UAV/UAS) world market and future forecast," Yano Research Institute Ltd., 2016.
  2. A. P. Dowling and J. E. Ffowcs Williams, Sound and Sources of Sound (Ellis Horwood Limited, Chichester, 1983), pp. 157-166.
  3. J. Katz and A. Plotkin, Low-speed Aerodynamics (Cambridge University Press, New York, 2001), pp. 206-228.
  4. T. R. Quackenbush, D. A. Wachspress, and A. H. Boschitsch, "Rotor aerodynamic loads computation using a constant vorticity contour free wake model," Journal of aircraft 32, 911-920, (1995). https://doi.org/10.2514/3.46818
  5. T. R. Quackenbush, D. B. Bliss, D. A. Wachspress, A. H. Boschitsch, and K. Chua, "Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis," NASA/CR-177611, 1990.
  6. D. B. Bliss, M. E. Teske, and T. R. Quackenbush, "A new methodology for free wake analysis using curved vortex elements," NASA/CR-3958, 1987.
  7. K. S. Brentner and F. Farassat, "Modeling aerodynamically generated sound of helicopter rotors," Progress in Aerospace Sciences 39, 83-120, (2003). https://doi.org/10.1016/S0376-0421(02)00068-4
  8. M. J. Lighthill, "On sound generated aerodynamically. I. General theory," In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 264, 321-342, (1952).
  9. J. E. Ffowcs Williams, and D. L. Hawkings, "Sound generation by turbulence and surfaces in arbitrary motion," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 264, 321-342 (1969). https://doi.org/10.1098/rsta.1969.0031
  10. F. Farassat, "Derivation of formulations 1 and 1A of farassat," NASA/TM-214853, 2007.
  11. S. Wagner R. Bareiss, and G. Guidati, Wind Turbine Noise (Springer Science & Business Media, Berlin, 2012), pp. 93-121.
  12. M. V. Lowson, "Theory and experiment for wind turbine noise," in Proc. 32nd Aerospace Sciences Meeting and Exhibit, 1-9 (1994).
  13. J. Counihan, "Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972," Atmospheric Environment 9, 871-905, (1975). https://doi.org/10.1016/0004-6981(75)90088-8
  14. T. F. Brooks, D. S. Pope, and M. A. Marcolini, "Airfoil self-noise and prediction," NASA RP 1218, 1989.