Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.21
no.1
/
pp.85-89
/
2008
An objective of this paper is to develop a partial discharge (PD) measurement device for monitoring gas insulated switches installed in power distribution system. A capacitive voltage probe was studied and designed to detect PD pulse without an electrical connection. The PD measurement device consists of the capacitive voltage probe attached outside of a bushing, a coupling network which attenuates AC voltage by 270 dB, and a low noise amplifier with the gain of 40 dB in ranges of 500 kHz${\sim}$20 MHz. The sensitivity of the prototype device calculated by a calibrator was 1.98 m V /pc. An application experiment was carried out in a 25.8 kV gas insulated switch and the peak pulse of 76.7 pC was detected. From the experimental results, it is expected that the PD measurement device can be applied to online monitoring system of gas insulated switches.
Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.
Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.
In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.
Journal of Institute of Control, Robotics and Systems
/
v.14
no.1
/
pp.1-6
/
2008
The ubiquitous sensor network technique is widely applied to variety of information fields such as home automations, logistics, traffic controls, public administrations, health and environment monitoring and etc. It is particularly useful in the areas where energy consumption is minimal and where continuous monitoring of the surrounding environments, which generates streams of data, are required. In this study, we have designed and implemented a living environment automatic control system which collects the streams of temperature, humidity, light and noise data of a simulated house setting in real-time fashion, then controls the home environment based on the collected data according to the users favorites. In order to differentiate the proposed system from the currently existing similar system, we have demonstrated not only the feasibility of collecting data using sensor network in the controlled environment but also the ability to control the various household equipments through wireless communications.
Kim, Sang-Ryul;Lee, Jong-Won;Kim, Bong-Ki;Lee, Jun-Shin
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.22
no.7
/
pp.667-675
/
2012
A damage estimation method for support structure of offshore wind turbine using modal parameters is presented for effective structural health monitoring. Natural frequencies and mode shapes for a support structure with monopile of an offshore wind turbine were calculated considering soil condition and added mass. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. Natural frequencies and mode shapes for 10 prospective damage cases were input to the trained neural network for damage estimation. The identified damage locations and severities agreed reasonably well with the accurate damages. Multi-damage cases could also be successfully estimated. Enhancement of estimation result using another parameters as input to neural network will be carried out by further study. Proposed method could be applied to other type of support structure of offshore wind turbine for structural health monitoring.
It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.
Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.227-230
/
2002
The Loose Part Monitoring System(LPMS) has been designed to detect, locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal, Rising time, Half period, and Global time, they are used as the inputs to neural network. Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising Time, Half Period, Maximum amplitude. The result showed that the neural network would be applied to LPMS. Also, applying the neural network to the Practical false alarm data during startup and impact test signal at nuclear power Plant, the false alarms are reduced effectively. 1.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.6
/
pp.1051-1057
/
2009
USN(Ubiquitous Sensor Network) is used to provide many services such as bridge monitoring, cultural properties monitoring, river monitoring, protection of an old and feeble person, management and control of a city and circumstance monitoring, etc. A RF transceiver is needed for implementing USN. In this paper the implementation and the design of a RF transceiver for sensor nodes operating in 2.4GHz frequency band are presented. The design procedure of AGC, a receiver and a transmitter is described. And the performance of the implemented RF transceiver is also tested. The test results of receiver sensitivity, receiver dynamic range, frequency stability, phase noise, output power of transmitter, flatness and spectrum mask are presented.
Journal of the Korean Institute of Telematics and Electronics A
/
v.31A
no.10
/
pp.10-20
/
1994
This paper presents a CATV SMS (Status Monitoring System) using HDLC (High Level Data Link Contorl) protocol and the system implementation.The system specifications were derived from the analysis of technical status and requirement of the domestic CATV industry. For the interoperability with a global network management system in the future, HDLC protocol was adopted in the system. The system performance was improved by using the communication controller chip and the large data buffer. For reducting the communication problems induced by accumulated noise in up-stream data channels, the system was designed that the different communication channel can be assigned to each proper mass of terminal. The operating software was designed with menu driven user interface and have various functions for the convenience of users. The test result of the implemented system at the experimental network showed good performance and suitability for a coaxial CATV Status Monitoring System.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.