Traffic noise estimation models are useful in evaluation of the noise pollution in current circumstances. They are helpful tools for design and planning new roads and highways. Measurement of average traffic noise level is possible when traffic speed and volume are known. The objective of this study was to devise a model for prediction of highway traffic noise levels based on current traffic variables in Iran. The design of this model was to take the impact of traffic congestion into consideration and to be field tested. This study is a library research augmented by field study conducted on Saeedi Highway located south west of Tehran. The period for the field study lasted 5 days from 7-12 February, 2013. This study examined liner and non-liner methods in formulation of its model. Liner method without a fixed coefficient was the best fit for the intended model. The proposed model can serve as a decision making tool to estimate the impact of key influential factors on sound pressure levels in urban areas in Iran.
A parametric detection scheme for determenistic signals is obtained in a generalized observation model which contains non-additive noise. The model employed in this paper includes several special cases such as those describing purely-additive noise, multiplicative noise, and signal dependent noise and allows the consideration of deterministic and random signals. Locally optimum detectors for known deterministic signals in the model are derived and analyzed for performance. It is shown that the locally optimum detectors are interesting generalizations of those for the purely-additive noise model. Performance of the locally optimum detectors designed for the generalized observation model is compared to that of other common detectors.
CT 촬영 시 방사선량을 줄이면 피폭 위험성을 낮출 수 있으나, 영상 해상도가 크게 저하 될 뿐아니라 잡음(noise) 발생으로 인해 진단의 효용성이 떨어진다. 따라서, CT 영상에서의 잡음제거는 영상복원 분야에 있어 매우 중요하고 필수적인 처리 과정이다. 영상 영역에서 잡음과 원래 신호를 분리하여 잡음만을 제거하는 것은 한계가 있다. 본 논문에서는 웨이블릿 변환 기반 GAN 모델 즉, WT-GAN(wavelet transform-based GAN) 모델을 이용하여 CT 영상에서 효과적으로 잡음 제거하고자 한다. 여기서 사용된 GAN 모델은 U-Net 구조의 생성자와 PatchGAN 구조의 판별자를 통해 잡음제거 영상을 생성한다. 본 논문에서 제안된 WT-GAN 모델의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음(Gaussian noise), 포아송 잡음 (Poisson noise) 그리고 스펙클 잡음 (speckle noise)에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, WT-GAN 모델은 전통적인 필터 즉, BM3D 필터뿐만 아니라 기존의 딥러닝 모델인 DnCNN, CDAE 모형 그리고 U-Net GAN 모형보다 정성적이고, 정량적인 척도 즉, PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.
In speech recognition for real-world applications, the performance degradation due to the mismatch introduced between training and testing environments should be overcome. In this paper, to reduce this mismatch, we provide a hybrid method of spectral subtraction and residual noise masking. We also employ multiple model approach to obtain improved robustness over various noise environments. In this approach, multiple model sets are made according to several noise masking levels and then a model set appropriate for the estimated noise level is selected automatically in recognition phase. According to speaker independent isolated word recognition experiments in car noise environments, the proposed method using model sets with only two masking levels reduced average word error rate by 60% in comparison with spectral subtraction method.
This paper presents to predict the powertrain structure-borne noise which is primary resource of interior noise. As the first step, it is built up a hybrid powertrain model which is based on the real powertrain which is verified with static and dynamic properties. The methods for verifying are modal analysis and running vibration testing which are experimentally implemented. Based on the Hybrid powertrain component model, an initial predictive assembly model is simulated. As the second step, the characteristic transfer functions are measured that are dynamic stiffness of rubber mounts and vibro-acoustic transfer function based on the acoustic reciprocity. Several techniques utilizing special experimental devices have been proposed for this research. Finally, the structure-borne noise by powertrain will be predict and verify with dynamic simulation and experiment.
제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
/
pp.43-46
/
1995
Adaptive algorithms based on gradient adaptation have been extensively investigated and successfully jointed with active noise/vibration control applications. The Filtered-X LMS algorithm became one of the basic feedforward algorithms in such applications, but still is not fully understood. The error path model effect on the Filtered-X LMS algorithm has been under the investigation and some useful properties related stability has been discovered. We are interested in utilizing the fact that the model error caused by the way optimizing the error path model in a view point of convergence speed of Filtered-X LMS algorithm for pure tone noise suppression application without any performance loss at steady state.
Autoregressive moving average(ARMA) model which is a time domain parametric modeling method is implemented for modeling and reproducing characteristics of exhaust noise of an automobile in various RPM range. Experiments have been carried out using 9 set of exhaust noise signals measured at 1,000-3,000 RPM range. Characteristics of sampled signals were estimated using ARMA modeling and Akaike's FPE(final prediction error) criterion to define exact model structure and for model validation. The digital filter consisted of the esitmated ARMA(70,1) model parameters was programed to reproduce exhaust noise. The spectral analysis of reproduced noise is very close to original. The results show that our approaching technique for reproducing acoustic characteristics is valid and feasible to apply in the field of noise quality control.
NIC@E is the software developed by authors. The program provides the noise level in outdoors due to various noise source types : construction machines including blast sources, railroad vehicles and automobiles. It operates in the Windows system. In this paper, a highway traffic noise has been evaluated using various types of approach : Ray-tracing method, NIRI method, JAS method. In order to compare the noise estimation performance for various models, a measurement is conducted on a 8 lane express highway at the distance of 25 m and 50 m from the lane. The result shows that the ray tracing and JAS model predict the measured value well within 2dB deviaton. The NIRI model, however, underestimates the highway noise level, as the distance between the source and receiver increases.
A psychoacoustic model based noise shaping method which shapes the noise in the frequency domain is proposed, where its presence with a host signal will not be perceptually noticeable. The derivation of imperceptible noise levels from the masking thresholds of the signal involves a deconvolution associated with the spreading function in the psychoacoustic model, which results in an ill-conditioned problem. In this paper, the problem is formulated as a constrained optimization, and it is demonstrated that the solution provides noise shaping where the noise excitation level conforms to the masking thresholds of the signal, and thus the noises embedded in the signal will not be perceived by human ear.
Active window system which can reduce the environmental noises, such as traffic noise and construction noise, from an open window into a room was proposed in the previous works. The key idea of the proposed active window system was that the control sources are approximately collocated with the primary noise source in terms of the acoustic power for global noise reduction throughout the interior room. Moreover, because it is important not to intrude into the living space in the building environment, no error sensors were used and an open-loop control method using control sources at the window frame and the reference sensors outside the room was used for the proposed system. The open-loop control gain was calculated by the interior room model assumed as the semi-infinite space, and the interior sound field was estimated by Rayleigh integral equation under the baffled window model assumption. However, windows with a finite thickness should were considered for the calculation of the open-loop control gain of the active window system since these are representative of most window cases. Therefore, the finite thickness window model based on the Sgard's model was derived and the open-loop control gain using the interior sound field estimated by that model was calculated for active window system. To compare the performance of these two models, a scale-model experiment was performed in an anechoic chamber according to noise source directions. Experimental results showed that the performance for the thickness window model is better than the baffled window model as the angle with respect to the perpendicular direction is larger.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.