• Title/Summary/Keyword: Noise isolation

Search Result 444, Processing Time 0.023 seconds

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF

Vibration isolation effect of floor impact sound by ceiling structure (바닥충격음에서의 천장구조에 따른 진동절연 효과)

  • Lee, S.H.;Jeong, G.C.;Chung, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.257-260
    • /
    • 2004
  • This study aims to evaluate factors of ceiling structure influencing to the floor impact sound. For this reasons, we measured the vibration of ceiling and the floor impact sound by ceiling structure. The main results from this study are that ceiling structure makes worse to non-ceiling structure for an effect of air layer in heavy-weight floor impact sound. But it has an effect on light-weight floor impact sound about $2\sim8dB$.

  • PDF

Evaluation of Seismic Responses of Isolated Bridges Considering the Flexibility of Piers (교각의 강성을 고려한 지진격리교량의 응답특성 평가)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.662-665
    • /
    • 2004
  • In this paper, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratios, which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier. From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

  • PDF

The Development & Simulation for the Isolation Mount installed in Aircraft (항공용 마운트의 개발과 시뮬레이션)

  • Jeon, Hee-Ho;Park, Jae-Min;Lee, Seung-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.223-228
    • /
    • 2010
  • The mount which is used in military airplane should be operated in various situations such as vibration, shock and temperature. The recent mounts cost a lot and take much time to replace when they broke down. That's why new mount was produced in domestic by reverse engineering and the product has been proved its performance through environment test regarding vibration and shock. According to simulation of dynamic characteristics on vibration and shock, the result turns out to be similar to the result of the environmental test with an error of within 10 percent. As a result this research, a draft of the military aviation mount designing program is arranged.

Designing Electronics for High Frequency Shock (고주파 충격에 의한 전자부품 고장 방지 설계)

  • Lee, Jong-Hak;Kang, Dong-Seok;Choi, Ji-Ho;Kang, Young-Sik;Lee, Chang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.700-706
    • /
    • 2015
  • In this study, stability designing electronics mounted on launch vehicle for shock load(low/high frequency band) could be derived. For the low-frequency shock loads, CCA(circuit card assembly) has secured the structural integrity over the best natural frequency techniques. For the high-frequency shock load, the structural integrity could be ensured with applying device such as the insulation pad. When the EAR is applied, insulation effect of part application is good more than whole application.

A Study on Mount Vibration Reduction of a Centrifugal Turbo Blower for FCEV (FCEV용 원심형 터보 블로워의 마운트 진동 저감에 관한 연구)

  • Kim, Yoon-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1073-1081
    • /
    • 2008
  • A centrifugal turbo blower of the fuel cell electric vehicle (FCEV) operates at very high speed above 30000 rpm in order to increase the pressure of the air, which supplied to a stack of FCEV, using rotation of its impeller blades. Vibration which originated from the blower is generated by unbalance of mechanical components, rotation of bearings and rotating asymmetry that rotate at high speed. The vibration is transmitted to receiving structure through vibration isolators and it can causes serious problems in the noise, vibration and harshness(NVH) performance. Thus, the study about reducing this kind of vibration is an important task. In this paper, dynamic analysis of the blower executed by numerical simulation and experimental analysis of the blower is also performed. Then, measured and simulated results are compared in order to validate of the simulation. Finally, reducing vibration through modifying mount stiffness is the main purpose of this paper.

Remote Control System of Ion Implanter (이온주입장치의 원격제어시스템 구축)

  • 이재형;양대정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1042-1047
    • /
    • 2003
  • The goal of this research is to implement a PC-based remote control system of ion implanter using Visual Basic programming. Presently, skilled process engineers are required to regularly setup and adjust implanter parameters. Any reduction in the number of production hours devoted to ion beam implanter setup or recalibration after a species change would represent substantial improvements in both manpower and equipment utilization. An optical communication system for the remote control and telemetry in the operation of the 50kev potential was designed and constructed. This system enables continuous and safe operation of the ion implanter and can be the basis for the automation. The isolation characteristics of optical fiber were 10kV/cm, and performance tests of the system under the intense noise environment during the implanter operations showed satisfactory results. This system is designed to completely replace the existing human-machine interface with many new functions. This paper describes the important components of the system including system architecture and software development. It is expected that this system can be used for the communication and control purpose in the high noise environments such as the operation of the MeV energy implanter or other high power, high noise systems.

A Study on the Development of High Stiffness Body for Suspension Performance (서스펜션 성능 확보를 위한 고강성 차페 개발 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.799-805
    • /
    • 2005
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of Passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band. we can suggest the design guideline about lg cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle Is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between handling and road noise. It makes possible to design the good handling performance vehicle and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

Floor Impact Sound Isolation Performance by Composition of Ceiling and Wall (천장 및 벽구성 방법이 바닥충격음 차단성능에 미치는 영향에 관한 연구)

  • Kim Kyoung-Woo;Kang Jea-Sik;Lee Seung-Eon;Yang Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.465-473
    • /
    • 2005
  • The impact sounds, generated by the walking of people, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The characteristics and level of this impact noise depends on the object striking the floor, on the basic structure of the floor, and on the finish materials of floor. The focus of this paper is to investigate the amount of improvement impact sound pressure level according to the change of the composition method of ceiling and wall. For this purpose, we tested impact sound pressure level of several cases which is the inserting of mineral wool, the increase of the thickness of air layer, the using of anti-vibration rubber in ceiling and attach the mineral wool on wall in the Floor Impact Sound Test Building of KICT. The results show that the composition method of ceiling and wall is more effective in the reduction of light weight impact sound specially in 125Hz and 250Hz.

A 2 GHz 20 dBm IIP3 Low-Power CMOS LNA with Modified DS Linearization Technique

  • Rastegar, Habib;Lim, Jae-Hwan;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.443-450
    • /
    • 2016
  • The linearization technique for low noise amplifier (LNA) has been implemented in standard $0.18-{\mu}m$ BiCMOS process. The MOS-BJT derivative superposition (MBDS) technique exploits a parallel LC tank in the emitter of bipolar transistor to reduce the second-order non-linear coefficient ($g_{m2}$) which limits the enhancement of linearity performance. Two feedback capacitances are used in parallel with the base-collector and gate-drain capacitances to adjust the phase of third-order non-linear coefficients of bipolar and MOS transistors to improve the linearity characteristics. The MBDS technique is also employed cascode configuration to further reduce the second-order nonlinear coefficient. The proposed LNA exhibits gain of 9.3 dB and noise figure (NF) of 2.3 dB at 2 GHz. The excellent IIP3 of 20 dBm and low-power power consumption of 5.14 mW at the power supply of 1 V are achieved. The input return loss ($S_{11}$) and output return loss ($S_{22}$) are kept below - 10 dB and -15 dB, respectively. The reverse isolation ($S_{12}$) is better than -50 dB.