• Title/Summary/Keyword: Noise exposure

Search Result 520, Processing Time 0.028 seconds

Dynamic Computed Tomography based on Spatio-temporal Analysis in Acute Stroke: Preliminary Study (급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구)

  • Park, Ha-Young;Pyeon, Do-Yeong;Kim, Da-Hye;Jung, Young-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.

Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography

  • Kim, Sang Youn;Cho, Jeong Yeon;Lee, Joongyub;Hwang, Sung Il;Moon, Min Hoan;Lee, Eun Ju;Hong, Seong Sook;Kim, Chan Kyo;Kim, Kyeong Ah;Park, Sung Bin;Sung, Deuk Jae;Kim, Yongsoo;Kim, You Me;Jung, Sung Il;Rha, Sung Eun;Kim, Dong Won;Lee, Hyun;Shim, Youngsup;Hwang, Inpyeong;Woo, Sungmin;Choi, Hyuck Jae
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1119-1129
    • /
    • 2018
  • Objective: To compare the image quality of low-tube-voltage and low-iodine-concentration-contrast-medium (LVLC) computed tomography urography (CTU) with iterative reconstruction (IR) with that of conventional CTU. Materials and Methods: This prospective, multi-institutional, randomized controlled trial was performed at 16 hospitals using CT scanners from various vendors. Patients were randomly assigned to the following groups: 1) the LVLC-CTU (80 kVp and 240 mgI/mL) with IR group and 2) the conventional CTU (120 kVp and 350 mgI/mL) with filtered-back projection group. The overall diagnostic acceptability, sharpness, and noise were assessed. Additionally, the mean attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure of merit (FOM) in the urinary tract were evaluated. Results: The study included 299 patients (LVLC-CTU group: 150 patients; conventional CTU group: 149 patients). The LVLC-CTU group had a significantly lower effective radiation dose ($5.73{\pm}4.04$ vs. $8.43{\pm}4.38mSv$) compared to the conventional CTU group. LVLC-CTU showed at least standard diagnostic acceptability (score ${\geq}3$), but it was non-inferior when compared to conventional CTU. The mean attenuation value, mean SNR, CNR, and FOM in all pre-defined segments of the urinary tract were significantly higher in the LVLC-CTU group than in the conventional CTU group. Conclusion: The diagnostic acceptability and quantitative image quality of LVLC-CTU with IR are not inferior to those of conventional CTU. Additionally, LVLC-CTU with IR is beneficial because both radiation exposure and total iodine load are reduced.

Reduction of Radiation Dose to Eye Lens in Cerebral 3D Rotational Angiography Using Head Off-Centering by Table Height Adjustment: A Prospective Study

  • Jae-Chan Ryu;Jong-Tae Yoon;Byung Jun Kim;Mi Hyeon Kim;Eun Ji Moon;Pae Sun Suh;Yun Hwa Roh;Hye Hyeon Moon;Boseong Kwon;Deok Hee Lee;Yunsun Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.681-689
    • /
    • 2023
  • Objective: Three-dimensional rotational angiography (3D-RA) is increasingly used for the evaluation of intracranial aneurysms (IAs); however, radiation exposure to the lens is a concern. We investigated the effect of head off-centering by adjusting table height on the lens dose during 3D-RA and its feasibility in patient examination. Materials and Methods: The effect of head off-centering during 3D-RA on the lens radiation dose at various table heights was investigated using a RANDO head phantom (Alderson Research Labs). We prospectively enrolled 20 patients (58.0 ± 9.4 years) with IAs who were scheduled to undergo bilateral 3D-RA. In all patients' 3D-RA, the lens dose-reduction protocol involving elevation of the examination table was applied to one internal carotid artery, and the conventional protocol was applied to the other. The lens dose was measured using photoluminescent glass dosimeters (GD-352M, AGC Techno Glass Co., LTD), and radiation dose metrics were compared between the two protocols. Image quality was quantitatively analyzed using source images for image noise, signal-to-noise ratio, and contrast-to-noise ratio. Additionally, three reviewers qualitatively assessed the image quality using a five-point Likert scale. Results: The phantom study showed that the lens dose was reduced by an average of 38% per 1 cm increase in table height. In the patient study, the dose-reduction protocol (elevating the table height by an average of 2.3 cm) led to an 83% reduction in the median dose from 4.65 mGy to 0.79 mGy (P < 0.001). There were no significant differences between dose-reduction and conventional protocols in the kerma area product (7.34 vs. 7.40 Gy·cm2, P = 0.892), air kerma (75.7 vs. 75.1 mGy, P = 0.872), and image quality. Conclusion: The lens radiation dose was significantly affected by table height adjustment during 3D-RA. Intentional head off-centering by elevation of the table is a simple and effective way to reduce the lens dose in clinical practice.

A Survey on the Status of Noisy Working Environment in Manufacturing Industries (제조업 산업장의 소음 작업환경 실태에 관한 조사 연구)

  • Kim, Joon-Youn;Kim, Byung-Soo;Lee, Chae-Un;Jun, Jin-Ho;Lee, Jong-Tae;Kim, Jin-Ok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.1 s.19
    • /
    • pp.16-30
    • /
    • 1986
  • In order to prepare the fundamental data for the improvement of noisy working environments and the effective hearing conservation program on workers exposed to industrial noise, the authors surveyed the working processes and evaluated the noise levels on 56 manufacturing industries in Pusan area from April to July in 1985. The results were summarized as follows : 1. The noise level was the highest in shipbuilding and repairing(95.6 dBA), and followed by steel rolling(94.0 dBA), manufacture of motor vehicles(93.1 dBA), manufacture of fishing nets(92.9 dBA), manufacture of testiles(92.5 dBA), iron and steel foundries(89.3 dBA), manufacture of metal products(89.1 dBA), preserving and processing of marine foods(87.0 dBA), manufacture of rubber products(85.3 dBA), manufacture of plywood(84.9 dBA) and manufacture of paints(84.5 dBA). 2. Among fifty surveyed working processes, the noise level of twenty-one processes (42%) exceeded the threshold limit value for 8 hours per day. 3. As the allowable exposure times by governmental threshold limit values to industrial noise level(dBA), cocking of shipbuilding and repairing and plating(CGL) of steel rolling were the shortest(30 minutes), and followed by assembling(rivet) of manufacture of motor vehicles(1 hour) weaving of manufacture of textiles and shot, machine, pipe laying of shipbuilding and repairing(2 hours). 4. By the result of octave band analysis on noisy working processes in excess of 90 dBA, the sound level was the highest at 2,000 Hz or 4,000 Hz. 5. It was recognized that the measurement of overall sound pressure level was also effective as octave band analysis in evaluating the industrial noise.

  • PDF

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.

Reducing of Craniofacial Radiation Dose Using Automatic Exposure Control Technique in the 64 Multi-Detector Computed Tomography (64 다중 검출기 전산화단층촬영에서 관전류 자동노출조절 기법을 이용한 두개부 방사선량 감소 정도 평가)

  • Seoung, Youl-Hun;Kim, Yong-Ok;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • The purpose of this study was to evaluate the usefulness of reducing of craniofacial radiation dose using automatic exposure control (AEC) technique in the 64 multi-detector computed tomography (MDCT). We used SOMATOM Definition 64 multi-detector CT, and head of whole body phantom (KUPBU-50, Kyoto Kagaku CO. Ltd). The protocol were helical scan method with 120 kVp, 1 sec of rotation time, 5 mm of slice thickness and increment, 250 mm of FOV, $512{\times}512$ of matrix size, $64{\times}0.625\;mm$ of collimation, and 1 of pitch. The evaluation of dose reducing effect was compared the fixed tube current of 350 with AEC technique. The image quality was measured the noise using standard deviation of CT number. The range of craniofacial bone was to mentum end from calvaria apex, which devided three regions: calvaria~superciliary ridge (1 segment), superciliary ridge~acanthion (2 segment), and acanthion~mentum (3 segment). In the fixed tube current technique, CTDIvol was 57.7 mGy, DLP was $640.2\;mGy{\cdot}cm$ in the all regions. The AEC technique was showed that 1 segment were 30.7 mGy of CTDIvol, 340.7 $mGy{\cdot}cm$ of DLP, 2 segment were 46.5 mGy of CTDIvol, $515.0\;mGy{\cdot}cm$ of DLP, and 3 segment were 30.3 mGy of CTDIvol, $337.0\;mGy{\cdot}cm$ of DLP. The standard deviation of CT number was 2.622 with the fixed tube current technique and 3.023 with the AEC technique in the 1 segment, was 3.118 with the fixed tube current technique and 3.379 with the AEC technique in the 2 segment, was 2.670 with the fixed tube current technique and 3.186 with the AEC technique in the 3 segment. The craniofacial radiation dose using AEC Technique in the 64 MDCT was evaluated the usefulness of reducing for the eye, the parotid and thyroid with high radiation sensitivity particularly.

Optimization of the Empirical Method to the Enhancement Image of the Four Chambers at the Same Time in the Pediatric Cardiac Computed Tomography (소아 심장 전산화단층촬영 검사에서 4 chamber의 동시 조영증강 영상에 대한 최적화 방안)

  • Park, Chanhyuk;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.279-285
    • /
    • 2014
  • This study is to have dose reduction and minimization of excessive use of contrast medium in the pediatric cardiac computed tomography and to suggest the optimization plan to acquire the enhancement image of the 4 chambers at the same time by formulating scan delay time in empirical method with considering variables such as contrast medium injection velocity and cardiac approaching time. Quantitative, qualitative and dose assessment were carried out for 30 pediatric patients who had taken the cardiac examination. In conclusion, image enhancement in 4 chambers of the cardiac shows over 300 HU which is proper to pediatric cardiac reading by applying the empirical method with calculating scan delay time according to weight and contrast medium volume and injection velocity. Qualitative image assessments in confidence sharpness and noise have excellence qualitatively. Exposure dose to pediatrics also decreases precisely. Therefore this study is judged to take a important role of making optimization images with advantages of dose reduction and less side effects caused by it's excessive use in clinic.

Biological Monitoring of Workers Exposed to Diisocyanates using Urinary Diamines (소변 중 디아민을 이용한 디이소시아네이트 노출 근로자의 생물학적 모니터링)

  • Lee, Jong Seong;Kim, Boowook;Shin, Jungah;Baek, JinEe;Shin, Jae Hoon;Kim, Ji-hye
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.178-187
    • /
    • 2016
  • Objectives: Diisocyanates are a potent inducer of diseases of the airways, especially asthma. In this study, toluenediamine(TDA) and methylenedianiline(MDA) in urine were evaluated as biomarkers of exposure to tolunenediisocyanate(TDI) and methylenediphenyl diisocyanate(MDI), respectively. Methods: Workers exposed to TDI and MDI, as well as non-occupationally exposed subjects, were studied and pre- and post-shift urine samples were collected from 8 control subjects and 8 workers from a factory which manufactures polyurethane products for reducing noise and vibration in automobiles. Airborne TDI and MDI(n=8) were sampled on solvent-free glass filters impregnated with n-butylamine and detected by liquid chromatography atmospheric pressure ionization tandem mass spectrometry. Urinary TDA and MDA were detected as pentafluoropropionic acid anhydride(PFPA) derivatives by liquid chromatography electrospray ionization tandem mass spectrometry. Results: The median levels of urinary 2,6-TDA(p<0.001), 2,4-TDA(p=0.001), and MDA(p<0.001) of workers in post-shift samples were significantly higher than those of controls. The median levels of urinary 2,6-0TDA($0.63{\mu}g/g$ creatinine vs $0.34{\mu}g/g$ creatinine, p=0.017) and MDA($4.21{\mu}g/g$ creatinine vs $3.18{\mu}g/g$ creatinine, p=0.017) of workers in post-shift samples were significantly higher than those of the pre-shift samples. There were significant correlations between the urinary 2,6-TDA, 2,4-TDA, and MDA of workers in post-shift samples and the airborne 2,6-TDI(rho=0.952, p<0.001), 2,4-TDI(rho=0.833, p=0.001), and MDI(rho=0.952, p<0.001). Conclusions: These urinary diamines, metabolites of diisocyanates, in post-shift samples were useful biomarkers to assess occupational exposure to diisocyanates.

Artifacts in Digital Radiography (디지털 방사선 시스템에서 발생하는 Artifact)

  • Min, Jung-Whan;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.375-381
    • /
    • 2015
  • Digital Radiography is a big part of diagnostic radiology. Because uncorrected digital radiography image supported false effect of Patient's health care. We must be manage the correct digital radiography image. Thus, the artifact images can have effect to make a wrong diagnosis. We report types of occurrence by analyzing the artifacts that occurs in digital radiography system. We had collected the artifacts occurred in digital radiography system of general hospital from 2007 to 2014. The collected data had analyzed and then had categorize as the occurred causes. The artifacts could be categorized by hardware artifacts, software artifacts, operating errors, system artifacts, and others. Hardware artifact from a Ghost artifact that is caused by lag effect occurred most frequently. The others cases are the artifacts caused by RF noise and foreign body in equipments. Software artifacts are many different types of reasons. The uncorrected processing artifacts and the image processing error artifacts occurred most frequently. Exposure data recognize (EDR) error artifacts, the processing error of commissural line, and etc., the software artifacts were caused by various reasons. Operating artifacts were caused when the user didn't have the full understanding of the digital medical image system. System artifacts had appeared the error due to DICOM header information and the compression algorithm. The obvious artifacts should be re-examined, and it could result in increasing the exposure dose of the patient. The unclear artifact leads to a wrong diagnosis and added examination. The ability to correctly determine artifact are required. We have to reduce the artifact occurrences by understanding its characteristic and providing sustainable education as well as the maintenance of the equipments.