• Title/Summary/Keyword: Noise direction

Search Result 857, Processing Time 0.022 seconds

Performance analysis and operation simulation of the beamforming antenna applied to cellular CDMA basestation (셀룰러 CDMA 기지국에 beamforming 안테나를 적용하기 위한 동작 시뮬레이션 및 성능해석에 관한 연구)

  • Park, Jae-Jun;Bae, Byeong-Jae;Jang, Tae-Gyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.32-45
    • /
    • 2000
  • This paper presents the analytic derivation of the SINR, when a linear array antenna is accommodated into the cellular CDMA basestation receiver, in relation to the two major performance effecting factors in beamforming(BF) applications, i. e., the direction selectivity, which refers to the narrowness of the mainbeam width, and the direction-of-arrival(DOA) estimation accuracy. The analytically derived results are compared with the operation simulation of the receiver realized with the several BF algorithms and their agreements are confirmed, consequently verifying the correctness of the analysis and the operation simulation. In order to investigate separately the effects of the errors occurring in the direction estimation and in the interference suppression, which are the two major functional components of general BF algorithms, both the algorithms of steering BF and the minimum- variance- distortionless-response(MVDR) BF are applied to the analysis. A signal model to reflect the spatially scattering phenomenon of the RF waves entering into the .:nay antenna, which directly affects on the accuracy of the BF algorithm's direction estimation, is also suggested in this paper and applied to the analysis and the operation simulation. It is confirmed from the results that the enhancement of the direction selectivity of the away antenna is not desirable in view of both the implementation economy and the BF algorithm's robustness to the erroneous factors. Such a trade-off characteristics is significant in the sense that it can be capitalized to obtain an economic means of BF implementation that does not severely deteriorate its performance while ensuring the robustness to the erroneous effects, consequently manifesting the significance of the analysis results of this paper that can be used as a design reference in developing BF algorithms to the cellular CDMA system.

  • PDF

Nonnegative Matrix Factorization Based Direction-of-Arrival Estimation of Multiple Sound Sources Using Dual Microphone Array (이중 마이크로폰을 이용한 비음수 행렬분해 기반 다중음원 도래각 예측)

  • Jeon, Kwang Myung;Kim, Hong Kook;Yu, Seung Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • This paper proposes a new nonnegative matrix factorization (NMF) based direction-of-arrival (DOA) estimation method for multiple sound sources using a dual microphone array. First of all, sound signals coming from the dual microphone array are segmented into consecutive analysis frames, and a steered-response power phase transform (SRP-PHAT) beamformer is applied to each frame so that stereo signals of each frame are represented in a time-direction domain. The time-direction outputs of SRP-PHAT are stored for a pre-defined number of frames, which is referred to as a time-direction block. Next, In order to estimate DOAs robust to noise, each time-direction block is normalized along the time by using a block subtraction technique. After that, an unsupervised NMF method is applied to the normalized time-direction block in order to cluster the directions of each sound source in a multiple sound source environments. In particular, the activation and basis matrices are used to estimate the number of sound sources and their DOAs, respectively. The DOA estimation performance of the proposed method is evaluated by measuring a mean absolute error (MAE) and the standard deviation of errors between the oracle and estimated DOAs under a three source condition, where the sources are located in [$-35{\circ}$, 5m], [$12{\circ}$, 4m], and [$38{\circ}$, 4.m] from the dual microphone array. It is shown from the experiment that the proposed method could relatively reduce MAE by 56.83%, compared to a conventional SRP-PHAT based DOA estimation method.

Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation (사중극자 보정 Ffowcs Williams and Hawkings 방정식을 이용한 수중 익형 공동 유동소음에 대한 수치적 고찰)

  • Ku, Garam;Ryu, Seo-Yoon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.263-270
    • /
    • 2018
  • In most industry fields concerning external flow noise problems, the hybrid computational aeroacoustic techniques based on the FW-H (Ffowcs Williams and Hawkings) equation are widely used for its numerical efficiency. However, when the surface integral form of FW-H equation is used without volume quadrupole sources, it is known to generate significant non-physical noise in a certain case. Especially, in the case of a flow in which the tip vortex cavitation is formed in the distant downstream direction such as flow driven by an underwater propeller, the accuracy in noise prediction becomes poor unless it is not properly modelled. Therefore, in this study, the nonphysical acoustic waves caused by the surface integral form of FW-H equation is reduced by adding the quadrupole correction term. First, to verify the accuracy of the in-house code of FW-H equation, the noise by an axial fan used in the outdoor unit of air conditioner was calculated and compared with the results of ANSYS Fluent. In order to verify the effects of the quadrupole correction term, the noise prediction for isentropic vortex convection is performed and it is confirmed that the error is reduced by the quadrupole correction term. Finally, the noise prediction is performed for the flow field generated by the Clark-Y hydrofoil in underwater. It is confirmed that the error caused by the cavitation passing through the integral surface can be reduced by the quadrupole correction term.

A Study on Generating Virtual Shot-Gathers from Traffic Noise Data (교통차량진동 자료에 대한 최적 가상공통송신원모음 제작 연구)

  • Woohyun Son;Yunsuk Choi;Seonghyung Jang;Donghoon Lee;Snons Cheong;Yonghwan Joo;Byoung-yeop Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.229-237
    • /
    • 2023
  • The use of artificial sources such as explosives and mechanical vibrations for seismic exploration in urban areas poses challenges, as the vibrations and noise generated can lead to complaints. As an alternative to artificial sources, the surface waves generated by traffic noise can be used to investigate the subsurface properties of urban areas. However, traffic noise takes the form of plane waves moving continuously at a constant speed. To apply existing surface wave processing/inversion techniques to traffic noise, the recorded data need to be transformed into a virtual shot gather format using seismic interferometry. In this study, various seismic interferometry methods were applied to traffic noise data, and the optimal method was derived by comparing the results in the Radon and F-K domains. Additionally, the data acquired using various receiver arrays were processed using seismic interferometry, and the results were compared and analyzed to determine the most optimal receiver array direction for exploration.

Extended Edge Based Line Averaging Method for Deinterlacing (확장된 에지기반 라인평균 방법의 디인터레이싱 응용)

  • Min Byong seok;Kim Seung jong;Cho Dong uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.223-229
    • /
    • 2005
  • In this paper, we proposed an extended edge-based line averaging method for deinterlacing with restricted search range. Conversion from interlaced signal to non-interlaced signal is one of important issues. Conventional deinterlacing algorithms usually utilize edge-based line average algorithm(ELA) within pixel-by-pixel approach. However, it is very sensitive to noise and variation of intensity. To reduce the sensitivity, the proposed method adopts a block-by-block approach and provides reliable direction of edge. Simulation results show that it provides a better performance than other pixel-by-pixel ELA-based methods.

Elliptical EHL Contacts under Dynamic Loading Conditions in HERB Drive

  • Jang, Si-Youl;Park, Kyoung-Kuhn;Kim, Wan-Doo;Moon, Ho-Jee
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.89-90
    • /
    • 2002
  • Ball reducer (HERB Drive: High Efficient Wave Rolling Ball Drive) with waved grooves has many advantages over other types of reducers for high-reduction ratio, low noise and low energy loss, etc. The mechanism of force transmission is very similar to that of cam and follower in automobile valve train system especially in contact behaviors. In this study, we have investigated the traces of contact between ball and outer ring, and the dynamic contact behaviors of elastohydodynamic lubrication(EHL) with a certain reduction ratio. In order to verify the contact behaviors between ball and outer ring for the critical endurance lift, the contact velocity and load are computed for a cycle. During some intervals of a cycle, the contact velocity reverses its direction very suddenly. It is expected that changing the contact direction causes undesirable endurance performance because EHL film frequently col lapse at the moment of velocity reversal. From the computational investigation in this work, we hope to predict similar contact damages in other machinery due to this kind of contact behaviors, which is very typical in many contact phenomena.

  • PDF

Comparisons of AIC and MDL on Estimation Reliability of Number of Soureces in Direction Finding Problem (Direction Finding Problem에서의 신호원 갯수 추정 신뢰도에 관한 AIC와 MDL의 비교)

  • 이일근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.842-849
    • /
    • 1990
  • In this paper, a couple of well-known methods for determination of the number of source signals impinging on sersor array in array processing are introduced and compared in terms of estimation accuracy. The one is the procedure issued by Akaike(Akaike's Information Criterion : AIC) and the other one by Schwartz and Rissanen(Minimum Description Length:MDL). This paper demonstrates, through computer simulation, that the AIC is more reliable than the MDL in such troublesome cases as very closely spaced source signlas, very limited number of sensors in the array, finite data sequences and/or low Signal-to-Noise ratio(S/N).

  • PDF

Vibration of Pipes Coupled with Internal and External Fluids (내부 및 외부 유체와 연성된 파이프의 진동 해석)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • The waveguide finite element (WFE) method is a useful numerical technique to investigate wave propagation along waveguide structures which have uniform cross-sections along the length direction ('x' direction). In the present paper, the vibration and radiated noise of the submerged pipe with fluid is investigated numerically by coupling waveguide finite elements and wavenumber boundary elements. The pipe and internal fluid are modelled with waveguide finite elements and the external fluid with wavenumber boundary elements which are fully coupled. In order to examine this model, the point mobility, dispersion curves and radiated power are calculated and compared for several different coupling conditions between the pipe and internal/external fluids.

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

Solving the Correspondence Problem by Multiple Stereo Image and Error Analysis of Computed Depth (다중 스테레오영상을 이용한 대응문제의 해결과 거리오차의 해석)

  • 이재웅;이진우;박광일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1431-1438
    • /
    • 1995
  • In this paper, we present a multiple-view stereo matching method in case of moving in the direction of optical axis with stereo camera. Also we analyze the obtainable depth precision to show that multiple-view stereo increases the virtual baseline with single-view stereo. This method decides candidate points for correspondence in each image pair and then search for the correct combinations of correspondences among them using the geometrical consistency they must satisfy. Adantages of this method are capability in increasing the accuracy in matching by using the multiple stereo images and less computation due to local processing. This method computes 3-D depth by averaging the depth obtained in each multiple-view stereo. We show that the resulting depth has more precision than depth obtainable by each independent stereo when the position of image feature is uncertain due to image noise. This paper first defines a multipleview stereo agorithm in case of moving in the direction of optical axis with stereo camera and analyze the obtainable precision of computed depth. Then we represent the effect of removing the incorrect matching candidate and precision enhancement with experimental result.