• Title/Summary/Keyword: Noise and Vibration Spectrum

Search Result 305, Processing Time 0.023 seconds

Coherent Analysis of vehicle HVAC Using the MDSA Method (다차원 해석법을 이용한 자동차 공조시스템의 기여도분석)

  • Oh Jae-Eung;Hwang DongKun;Abu Aminudin;Lee Jung-Youn;Kim SungSoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.143-150
    • /
    • 2005
  • To verify applicability of multi-dimensional spectral analysis (MDSA) fur noise source identification two different approaches which are frequency response and coherent function have been investigated. The coherence function approach appears able to separate the correlated system when the noise sources were coherent. In this study, we identify contribution of structure-borne-noise of vehicle HVAC system using MDSA method. Firstly, to identify the applicability of MDSA method, 4-inputs of vehicle HVAC system were the signals measured by accelerometers attached on the selected noise sources which were composed of blower, evaporator, heater and duct. While 1-output which was driver's position sound was the SPL signals measured by a remote microphone, when the blower motor was operating. We identify efficiency of systems modeled with four Inputs/single output through ordinary coherence function (OCF) and partial coherence function (PCF). As a result of experiment, the blower accounted for $62-88\%$ of the overall level of sound energy density. Also, according to the analysis of acoustic signal and vibration signals measurement, an investigation of the noise source identification in the vehicle HVAC is presented. With the sound intensity method, the major sources of the vehicle HVAC radiation are verified. Also the method of improving the noise reduction is proposed by attaching damping patch access to blower motor and noise reduction is verified.

CNN based Raman Spectroscopy Algorithm That is Robust to Noise and Spectral Shift (잡음과 스펙트럼 이동에 강인한 CNN 기반 라만 분광 알고리즘)

  • Park, Jae-Hyeon;Yu, Hyeong-Geun;Lee, Chang Sik;Chang, Dong Eui;Park, Dong-Jo;Nam, Hyunwoo;Park, Byeong Hwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.264-271
    • /
    • 2021
  • Raman spectroscopy is an equipment that is widely used for classifying chemicals in chemical defense operations. However, the classification performance of Raman spectrum may deteriorate due to dark current noise, background noise, spectral shift by vibration of equipment, spectral shift by pressure change, etc. In this paper, we compare the classification accuracy of various machine learning algorithms including k-nearest neighbor, decision tree, linear discriminant analysis, linear support vector machine, nonlinear support vector machine, and convolutional neural network under noisy and spectral shifted conditions. Experimental results show that convolutional neural network maintains a high classification accuracy of over 95 % despite noise and spectral shift. This implies that convolutional neural network can be an ideal classification algorithm in a real combat situation where there is a lot of noise and spectral shift.

The Evolution of Electromechanical Admittance from Mode-converted Lamb Waves Reverberating on a Notched Beam (노치가 있는 보에서 잔향하는 모드변환 램파의 전기역학적 어드미턴스 전이)

  • Kim, Eun Jin;Park, Hyun Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.270-280
    • /
    • 2016
  • This paper investigates the evolution of EM admittance of piezoelectric transducers mounted on a notched beam from wave propagation perspective. A finite element analysis is adopted to obtain numerical solutions for Lamb waves reverberating on the notched beam. The mode-converted Lamb wave signals due to a notch are extracted by using the polarization characteristics of piezoelectric transducers collocated on the beam. Then, a series of temporal spectrums are computed to demonstrate the evolution of EM admittance through fast Fourier transform of the mode-converted Lamb wave signals which are consecutively truncated in the time domain. When truncation time is relatively small, the corresponding temporal spectrum is governed by the characteristics of the input driving frequency. As truncation time becomes large, however, the modal characteristics of the notched beam play a crucial role in the temporal spectrum within the input driving frequency band. This implies that mode-converted Lamb waves reverberating on the beam contributes to the resonance of the beam. The root mean square values are computed for the temporal spectrums in the vicinity of each resonance frequency. The root mean square values increase monotonically with respect to truncation time for any resonance frequencies. Finally the implications of the numerical observation are discussed in the context of damage detection of a beam.

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Structural Design of Composite Blade and Tower for Small Wind Turbine System

  • Jang, Mingi;Lee, Sanggyu;Park, Gwanmun;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • This work is to propose a structural design and analysis procedure for development of the low noise 1kW class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. The proposed structural configuration has a sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. Moreover Investigation on structural safety of tower was verified through structural analysis by FEM.

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

Errors and applicabilities of cylindrical acoustic holography (원통면 음향 홀로그래피를 이용한 음장예측의 오차 해석 및 적용 방법)

  • 김시문;권휴상;김양한
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.37-48
    • /
    • 1995
  • The prediction of sound pressure using acoustic holography has been recognized as a useful tool for the visualization of sound field. Cylindrical acoustic holography amongst acoustic holographic methods planar, spherical, and cylindrical ones-has a wide range of application since its rather simple construction and easy implementation for the sources. To utilize the propery of cylindrical holographic method, estimation errors associated with holographic parameters such as aperture size and sampling space must be envisaged. In this these errors have been studied by numerical simulation and the relation between the errors and the spectrum in wavenumber domain is described. The results are also confirmed by simple experiments.

  • PDF

A New Method for Extracting Resonance Information in Acoustic Wave Resonance Scattering (음향파 공명 산란의 새로운 해석방법)

  • 이희남;박영진
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.409-417
    • /
    • 1999
  • A new method is proposed for the isolation of resonances from scattered waves for the isolaton of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitudes of the resonances from each partial wave, however, the phases are significantly different. The exact $\pi$-radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the differences in phases of the resonances from each partial wave, the new method and RST generate different total resonance spectra.

  • PDF

A Study on Turbulent Wall Pressure Fluctuations Using a Coherent Structure Model (응집구조 모델을 이용한 난류 벽면 압력변동에 대한 연구)

  • Ahn, Byoung-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.405-414
    • /
    • 2007
  • In recent years, experimental and theoretical studies show that turbulent flows looking disordered have a definite structure produced repetitively with visible order. As a core structure of turbulence, hairpin vertices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work, fully developed typical hairpin vortices are focused and the associated surface pressure distributions and their corresponding spectra are estimated. On the basis of the attached eddy model, the overall surface pressure spectra are represented in terms of the eddy size distribution. The model is validated by comparison of predicted wavenumber spectra with existing empirical models, the results of direct numerical simulation (DNS) and also spatial correlations with experimental measurements.