DOI QR코드

DOI QR Code

A Study on Turbulent Wall Pressure Fluctuations Using a Coherent Structure Model

응집구조 모델을 이용한 난류 벽면 압력변동에 대한 연구

  • Ahn, Byoung-Kwon (Division of Aerospace Naval Architecture and Ocean Engineering, Chungnam National University)
  • Published : 2007.05.20

Abstract

In recent years, experimental and theoretical studies show that turbulent flows looking disordered have a definite structure produced repetitively with visible order. As a core structure of turbulence, hairpin vertices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work, fully developed typical hairpin vortices are focused and the associated surface pressure distributions and their corresponding spectra are estimated. On the basis of the attached eddy model, the overall surface pressure spectra are represented in terms of the eddy size distribution. The model is validated by comparison of predicted wavenumber spectra with existing empirical models, the results of direct numerical simulation (DNS) and also spatial correlations with experimental measurements.

최근 난류유동에 대한 많은 실험 및 이론적 연구들은 무질서해 보이는 난류유동도 특정한 구조를 가지고 있으며 그 구조적 특성들이 반복적이며 가시적인 질서들을 가지고 있음을 보여주고 있다. 헤어핀 와류는 벽면 영역에서 난류경계층을 발전시키고 지탱하는 중요한 역할을 하는 난류의 핵심 구조로서 벽면 압력변동의 주요 특성을 설명해 줄 수 있는 개념 모델로 여겨지고 있다. 이 연구에서는 난류경계층에서 생성되는 헤어핀 와류들이 유기하는 표면 압력과 압력 스펙트럼을 평가하고 부착와류 모델링을 통해 이들이 유기하는 전체 표면 압력과 그에 상응하는 스펙트럼을 계산하였다. 이 연구를 통해 확립된 해석방법을 검증하기 위해 기존의 실험 및 이론계산을 통해 얻어진 결과들과 비교하여 신뢰성과 유용성을 증명하였다.

Keywords

References

  1. Head, M. R. and Bandyopadhyay, P., 1981, 'New Aspect of Turbulent Structure', Journal of Fluid Mech., 107, pp. 297-338 https://doi.org/10.1017/S0022112081001791
  2. Perry, A. E., Henbest, S. and Chong, M. S., 1986, 'A Theoretical and Experimental Study of Wall Turbulence', Journal of Fluid Mech., 165, pp. 163-199 https://doi.org/10.1017/S002211208600304X
  3. Dowling, A. P. and Ffowcs Williams, J. E., 1989, Sound and Sources of Sound, Ellis Horwood Limited, Chapter 10
  4. Graham, W. R., 1997, 'A Comparison of Models for the Wavenumber-frequency Spectrum of Turbulent Boundary Layer Pressures', Journal of Sound and Vibration, Vol. 206, No. 4, pp.541-565 https://doi.org/10.1006/jsvi.1997.1114
  5. Corcos, G. M., 1964, 'The Structure of the Turbulent Pressure Field in Boundary-layer Flows', Journal of Fluid Mech., Vol. 18, No.3, pp.353-378 https://doi.org/10.1017/S002211206400026X
  6. Efimtsov, B. M., 1982, 'Characteristics of the Field of Turbulent Wall Pressure Fluctuations at Large Reynolds Numbers', Sov. Phys, Acoust., Vol. 28, No.4, pp. 289-292
  7. Smol'yakov, A. V. and Tkachenko, V. M., 1991, 'Model of a Field of Pseudosonic Turbulent Wall Pressures and Experimental Data', Sov. Phys. Acoust. Vol. 37, No.6, pp. 627-631
  8. Ahn, B., 2005, Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers, Ph. D. thesis, University of Cambridge
  9. Blake, W. K., 1970, 'Turbulent Boundary-layer Wall-pressure Fluctuations on Smooth and Rough Walls', Journal of Fluid Mech., 44, pp.637-660 https://doi.org/10.1017/S0022112070002069
  10. Choi, H. and Moin, P., 1990, 'On the Space-time Characteristics of Wall-pressure Fluctuations', Physics of Fluids, 2, pp. 1450-1460
  11. Rizzi, S. A., Rackl, R. G. and Andrianov, E. V., 2000, Flight Test Measurements from the Tu-144L Structure/Cabin Noise Experiment, NASA Tech. Mem. 2000-209858