• Title/Summary/Keyword: Noise and Vibration Spectrum

Search Result 305, Processing Time 0.028 seconds

Spectral estimation of the pass-by noise of an acoustic source (등속 이동 음원의 통과소음 스펙트럼 추정에 관한 연구)

  • 임병덕;김덕기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.539-544
    • /
    • 1997
  • Although the identification of a moving noise source is important in reducing the source power of the transport systems such as airplane or high speed train, the direct measurement of the frequency characteristics is usually difficult due to wind noise when using a microphone running with that noise source. On the other hand the motion of a source causes the frequency characteristics of the pass-by sound measured at a fixed point to be distorted that it is quite difficult to identify the original source characteristics. In this study the relationship between the spectra of the source and the pass-by sound signal is analyzed for a source moving at a constant velocity. The effects of the speed and the frequency characteristics of the source on the pass-by noise spectrum are investigated through numerical simulations.

  • PDF

An Investigation of Acoustic Signal Characteristics in Turning of Aluminum (알루미늄 선삭공정에서 발생되는 음향 신호 특성)

  • Kim, Yong-Yun;Lee, Chang-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.507-514
    • /
    • 2007
  • This paper reports on the research which investigates acoustic signals acquired in turning with rough and finish simultaneously. The material is aluminum thin pipe. Two acousto-ultrasonic sensors were set on the finish and the rough bite of the CNC machine. It was first evaluated that one source was affected by the other. It was found that two signals were little affected each other, and that the acoustic signal from the finish bite was more related to the surface defects. Signals from the finish bite only were then analyzed in order to observe several types of surface defects. Second the fundamental experiments were accomplished to study the effects of machine vibration and material state. The signal characteristics due to surface defects were studied from the collected acoustic signals. The analysis was based on real time data, root mean squared average and frequency spectrum by fast fourier transform. As a result, the acoustic signals were made effects by machine condition, material structure. The acoustic signal from the finish bite was closely correlated with surface quality. Two types surface micro defects were then evaluated by the signal characteristics.

Prediction of a Structural Vibration and Radiated Noise of High-voltage Transformer through Force Identification (가진력 규명을 통한 초고압 변압기의 구조진동 및 방사소음 예측)

  • Yoo, Suk-Jin;Jung, Byung-Kyoo;Jeong, Weui-Bong;Hong, Chinsuk;Kim, Tae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.527-536
    • /
    • 2013
  • In order to predict structural vibration and radiated noise of high-voltage transformer in operation, it is necessary to precisely find the excitation force generated by the coils and core. However, finding the excitation force through experiments of high voltage transformer in operation is not possible. Therefore, this paper deals with identifying the excitation force by using the acceleration data measured through experiments and the transfer function estimated through finite element model. A method to predict structural vibration and radiated noise was also proposed. Three-phase windings and the core are the source of high-voltage transformer. The excitation forces were identified using the acceleration data and the transfer function of the surface of the tank. Structural vibration and radiated noise from the surface of the tank was predicted by using the identified excitation force. As a result of the interpretation of the experimental and computational analysis of structural vibration from the surface of the tank and radiated noise from the field point, the interpretation of the computational analysis showed relatively good accordance with the experiment.

Identification of Noise Source of the HVAC Using Complex Acoustic Intensity Method (복소음향인텐시티법을 이용한 HVAC의 소음원 검출)

  • Yang, Jeong-Jik;Lee, Dong-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1089-1096
    • /
    • 2010
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise measurement and noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. As an industrial application, the complex acoustic intensity method is applied to HVAC to identify sound radiation characteristics in the near field. Experimental complex acoustic intensity method was applied to HVAC, it is possible to identify noise sources in complicated sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. Especially, it can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for identification of noise. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.

Optimal Command Input for Suppressing the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion and Its Comparison with the Input Shaping Method (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감을 위한 최적 명령 입력 및 입력 다듬기 방법과의 비교)

  • Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.589-594
    • /
    • 2007
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a singledegree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the Shock Response Spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

  • PDF

An Investigation of Acoustic Signal Characteristics in Turning of Aluminum (알루미늄 선삭공정에서 발생되는 음향 신호 특성)

  • Lee, Chang-Hee;Kim, Yong-Yun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.457-462
    • /
    • 2007
  • This paper reports on the research which investigates acoustic signals acquired in turning with rough and finish simultaneously. The material is aluminum thin pipe. Two acoustic sensors were set on CNC machine. One was set on the finish bite and the other the rough. Two signals were first analyzed in order to consider how much the acoustic signal from the finish bite was coupled by that from the rough. A simple data collecting system to acquire signals from the finish was then determined because two acoustic signals were little coupled. Second the fundamental experiments were accomplished to study the effects of machine vibration and material state. The signal characteristics due to surface defects were studied from the collected acoustic signal data. The signal analysis was based on real time data, root mean squared average and frequency spectrum by fast fourier transform. As a result, the acoustic signals were made effects by machine condition, material structure. The acoustic signal from the finish bite was closely correlated with surface quality. Two types surface micro defects were then evaluated by the signal characteristics.

  • PDF

The response of a blade row to a three-dimensional turbulent gust

  • Wei, Dingbing;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.74-75
    • /
    • 2010
  • Inflow broadband noise is generated when turbulence in the rotor wakes impinges on the downstream stator vanes. In this paper a three-dimensional model is developed to investigate the broadband noise due to turbulence-cascade interaction. In the newly-developed model, we consider the effects of incident turbulent gust component in span-wise direction on the inflow broadband noise. The quasi-three-dimensional theory is deduced based on the tonal analytic theory of Smith (1972) and two-dimensional broadband noise generalization by Cheong et al. (2006; 2009). Extending the modified LINSUB code, quasi-three-dimensional computational results are presented. Finally, we compare these computational results with time-domain results to validate the theory.

  • PDF

Seismic Analysis for Driving Gear Reducer of ESW Traveling Sea Water Screen (ESW형 해수여과장치의 구동 기어감속기에 대한 내진해석)

  • Kim, Chang-Won;Lee, Young-Shin;Kim, Heung-Tae;Kim, Jee-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.731-736
    • /
    • 2011
  • In this study, the safety of the driving gear reducer of ESW traveling sea water screen was evaluated through seismic analysis. Mode analysis of gear reducer was performed for reliability of analysis. Seismic analysis was performed in Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE), which was applied as design condition using Floor Respnse Spectrum(FRS). The maxsimum displacement of gear reducer under OBE and SSE were 0.0137 mm and 0.0241 mm, respectively. The maximum stress of gear reducer under OBE and SSE were 2.42 MPa and 4.36 MPa, respectively.

  • PDF

A Seismic Analysis of Spent Fuel Handling Tool (사용후 핵연료 취급장비의 내진해석)

  • 김성종;이영신;김재훈;김남균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1210-1215
    • /
    • 2002
  • The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the spring-damper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

  • PDF

A Seismic Analysis for Driving Gear Reducer of ESW Traveling Sea Water Screen (ESW형 해수여과장치의 구동 기어감속기에 대한 내진해석)

  • Kim, Chang-Won;Lee, Young-Shin;Kim, Heung-Tae;Kim, Jee-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.599-604
    • /
    • 2012
  • In this study, the safety of the driving gear reducer of ESW(essential service water) traveling sea water screen was evaluated through seismic analysis. Mode analysis of gear reducer was performed for reliability of analysis. Seismic analysis was performed in operating basis earthquake(OBE) and safe shutdown earthquake(SSE), which were applied as design condition using floor response spectrum( FRS). The maximum strain of gear reducer under OBE and SSE were 20.4 ${\mu}$ and 33.6 ${\mu}$, respectively. The maximum stresses were 2.42 MPa under OBE condition and 4.36 MPa under SSE condition, which were smaller than the allowable strength of material.