• 제목/요약/키워드: Noise analogy

검색결과 115건 처리시간 0.022초

공조기 실외기 그릴 소음 예측 (Prediction of Noise Radiation induced by Grille of the Airconditioning Appliance)

  • 심인보;허대녕;정춘면;이덕주;김창준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1386-1392
    • /
    • 2000
  • This paper presents a new prediction method of radiated noise from grille of the airconditioning appliance. Laminar vortex sheddings behind a circular cylinder are simulated by solving two dimensional unsteady incompressible Navier-Stokes equation. The Finite Elements Method(FEM) and unstructured grid generation technique are applied to solve, the unsteady lift/drag coefficients are obtained to compute far-field noise using Lighthill's acoustic analogy. Grille is divided into some cylinder segments, and radiated noise from grille is obtained by summing noise generated from each segment. The effects of changing cross section of cylinder and grille geometry are studied. And sound pressure levels radiated from typical H-type grille are measured in KAIST anechoic wind tunnel at various inflow conditions and compared with numerical predictions.

  • PDF

Software Development for Fan Flow and Noise

  • 이덕주;이성규;전원주;이진욱;김영남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.1064-1067
    • /
    • 2004
  • The aim of this paper is to develop a GUI based software that can predict the flow and noise generated by fan. This user-friendly software is designed for the usual fan user in the various industrial companies as well as researcher related to rotating blade:;. Software consists of 3-modules; (1) concept design and performance prediction module using simple and fast methods, (2) preliminary design and flow/noise prediction module using free-wake potential solver and acoustic analogy and (3) detail design module using accurate CFD-software and acoustic formula. Some validations and applications in various fields are described.

  • PDF

저소음 고효율 로터깃 개발에 관한 연구 (Development of Rotor Blade with Low-Noise and High-Efficiency)

  • 신성룡;선효성;이수갑;남찬진;강인준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.84-90
    • /
    • 2000
  • Integrated tools are developed for the analysis of the aerodynamic performance and aeroacoustics of helicopter rotors. Heli-NK(Helicopter Navier-Stokes & Kirchhoff) code is for hovering and heli-PA(Helicopter Panel & Acoustic analogy) for forward flight. The former showed its ability to predict the hovering efficiency and high-speed impulsive noise level. Thrust calculation, noise levels, and noise directivity patterns are investigated to confirm the availability of the latter. With some proper validation and improvements. these codes will be more useful and practical.

  • PDF

분할판을 이용한 원형실린더 유동소음의 제어 (Control of flow-induced noise from a circular cylinder using a splitter plate)

  • 유동현;최해천;최명렬;강신형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.636-642
    • /
    • 1997
  • Laminar vortex shedding behind a circular cylinder with and without splitter plates attached to the circular cylinder at low Reynolds numbers are simulated by solving the unsteady incompressible Navier-Strokes equations. The Strouhal number, lift and drag rapidly change with the splitter plate. Far-field noise from the vortex shedding behind the cylinder is computed using the Lighthill acoustic analogy and the Curle's solution for the Lighthill equation. The acoustic source functions are obtained from the computed near-field velocity and pressure. Numerical results show that the volume quadrupole noise is small at low Mach numbers, compared with the surface dipole noise. Also the amplitude and frequency of the acoustic density fluctuations are varied with the length of splitter plates. The scattering effects at the edge of a splitter plate are considered by using the half-plane Green's function.

  • PDF

잠수함 형상의 유동소음 해석기법 연구 (Flow-Induced Noise Prediction for Submarines)

  • 여상재;홍석윤;송지훈;권현웅;설한신
    • 해양환경안전학회지
    • /
    • 제24권7호
    • /
    • pp.930-938
    • /
    • 2018
  • 잠수함에서 발생하는 수중방사소음은 적함의 소나에 의해 피탐될 확률과 직결되며, 잠수함 저소음화 방안은 생존성 향상을 위해 필수적이다. 최신 잠수함의 경우 기계류 소음저감 및 고속/대형화가 진행됨에 따라 선체 주위에 발생하는 유동소음에 대한 관심이 높아지고 있다. 본 연구에서는 자유수면의 효과를 고려하여 잠수함 형상 주위에 발생하는 유동소음 수준을 예측할 수 있는 소음해석기법을 개발하였다. 잠수함이 자유수면 근처 운항시에 잠수함 주위 유동장의 교란에 의해 발생하는 난류유동소음과 쇄파버블에 의한 소음이 발생한다. 먼저 잠수함 주위 유동장 해석을 위해, VOF법 기반의 비압축성 이상유동(two-phase flow)해석을 수행하여 잠수함 주위 자유수면 형상과 유동장 정보를 도출하였다. 이후 난류유동소음해석을 위해 음향상사기법인 Permeable FW-H를 적용하였고, 쇄파버블 소음해석을 위해 유동해석에서 도출된 난류운동에너지 분포결과를 기반으로 쇄파버블 소음모델을 적용하였다. 최종적으로 개발된 유동소음 해석기법은 선박해양플랜트연구소(KRISO)의 대형캐비테이션터널(LCT)에서 수행된 잠수함 모형 유동소음계측 실험결과와 비교를 통해 검증을 수행하였다.

수평축 풍력발전기의 저주파소음을 포함한 광대역소음 해석에 관한 연구 (Broadband Noise Analysis of Horizontal Axis Wind Turbines Including Low Frequency Noise)

  • 김현정;김호건;이수갑
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.45-53
    • /
    • 2007
  • This paper demonstrates a computational method in predicting aerodynamic noise generated from wind turbines. Low frequency noise due to displacement of fluid and leading fluctuation, according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Aerodynamic flow in the vicinity of the blade should be obtained first, while noise source modelling need them as numerical inputs. Vortex Lattice Method(VLM) is used to compute aerodynamic conditions near blade. In the use of program X-foil [M.Drela] boundary layer characteristics are calculated to obtain airfoil self noise. Wind turbine blades are divided into spanwise unit panels, and each panel is considered as an independent source. Retarded time is considered, not only in low frequency noise but also In turbulence ingestion noise and airfoil self noise prediction. Numerical modelling is validated with measurement from NREL [AOC15/50 Turbine) and ETSU [Markham's VS45] wind turbine noise measurements.

  • PDF

익렬 날개의 공력 소음 계산 (Computation. of aero-acoustics for an airfoil blade)

  • 김휘중;이승배;김진화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.768-773
    • /
    • 2001
  • The self-noise from blade cascade at off-design points mainly comes from separated boundary layer and vortex sheddings, and is also dependent on blade shape. If the incidence angle to the cascade increases, the stalling in blades may occur and the noise level increases significantly. The hybrid method using acoustic analogy was employed to compute the far-field noise spectra and directivity patterns from the separated vortex shedding at off-design points of the cascade of impeller. This paper is compared with the experimental data of a stationary cascade in the same conditions. The simulated result is in excellent .agreement with the measured data except th slight under-prediction near the maximum radiation angle for a dipole sound.

  • PDF

An Aerodynamic Noise Reduction Design at Inter-coach Space of High Speed Trains Based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • 제4권3호
    • /
    • pp.74-79
    • /
    • 2011
  • Recent years have witnessed speed up of moving vehicles such as high-speed of trains. Increase in speed entails concomitant increase in turbulent air flow which contributes toward increased aerodynamic noise. The proposed method for aerodynamic noise reduction is based on a biomimetic design of owl feather. The five morphological parameters of the owl feather are extracted from close observation, and simulation cases are constructed by applying design of experiments methodology. Swirling strength for each case is obtained through steady-state CFD analysis, and key morphological parameters that affect the turbulence are identified. Large eddy simulations (LES) are then performed on selected cases to predict the air turbulence. Different cases show varying vortex distributions which are expected to lead to varying aerodynamic noise levels.

소형 전술급 무인항공기 프로펠러의 이산소음 수치해석 (Discrete Noise Prediction of Small-Scale Propeller for a Tactical Unmanned Aerial Vehicle)

  • 유기완
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.790-798
    • /
    • 2018
  • Discrete noise signals from a small scale tactical unmanned aerial vehicle(UAV) propeller were predicted numerically using time domain approach. Two-bladed 29 inch propeller in diameter and 150 kgf in gross weight were used for main parameters of the UAV based on the actual size of the similar scale vehicle. Panel method and Farassat formula A1 were adopted for aerodynamic and aeroacoustic analysis respectively. Time domain signals of both thickness and loading noises were transformed into frequency domain to analyze the discrete noise characteristics. Directivity pattern in a plane perpendicular to the rotating disc plane and attenuation of noise intensity according to double distance were also presented.

FW-H 방정식을 이용한 선박 추진기 날개통과주파수 소음의 수치예측과 모형시험 검증 (Numerical Prediction of Marine Propeller BPF Noise Using FW-H Equation and Its Experimental Validation)

  • 설한신;박철수;김기섭
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.705-713
    • /
    • 2016
  • Underwater noise produced by ships has been becoming an increasing issue. A dominantly contributing noise source is a ship propeller. Therefore, it is important to predict the propeller noise at the propeller design stages. This study applied the acoustic analogy based on Ffowcs Williams equation for the prediction of the marine propeller BPF noise. A marine propeller BPF noise is investigated experimentally as well as numerically. Propeller BPF noise measurement and propeller cavitation observation tests are performed in the KRISO medium size cavitation tunnel. Numerical prediction schemes of marine propeller BPF noise are presented together with the noise measurement method. Propeller BPF noise predictions and experiments are performed under the various propeller operating conditions including non-cavitating and caveating conditions. Numerical and experimental results are compared and analyzed. It is shown that numerical prediction results are generally in good agreement with the measured data.