• Title/Summary/Keyword: Noise Sensitivity

Search Result 1,066, Processing Time 0.025 seconds

High accurate three-dimensional neutron noise simulator based on GFEM with unstructured hexahedral elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1479-1486
    • /
    • 2019
  • The purpose of the present study is to develop the 3D static and noise simulator based on Galerkin Finite Element Method (GFEM) using the unstructured hexahedral elements. The 3D, 2G neutron diffusion and noise equations are discretized using the unstructured hexahedral by considering the linear approximation of the shape function in each element. The validation of the static calculation is performed via comparison between calculated results and reported data for the VVER-1000 benchmark problem. A sensitivity analysis of the calculation to the element type (unstructured hexahedral or tetrahedron elements) is done. Finally, the neutron noise calculation is performed for the neutron noise source of type of variable strength using the Green function technique. It is shown that the error reduction in the static calculation is considerable when the unstructured tetrahedron elements are replaced with the hexahedral ones. Since the neutron flux distribution and neutron multiplication factor are appeared in the neutron noise equation, the more accurate calculation of these parameters leads to obtaining the neutron noise distribution with high accuracy. The investigation of the changes of the neutron noise distribution in axial direction of the reactor core shows that the 3D neutron noise analysis is required instead of 2D.

A Design of Low Noise RF _Front-End for Improvement Q-factor of Spiral Inductor Using Taguchi's Method (다구찌법을 이용한 나선형 인덕터의 Q-factor개선을 통한 Low Noise RF Front-End Design)

  • Choi, Jin-Kyu;Jung, Hyo-Bin;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • This article describes optimization for PGS(Patterned Ground Shield) of rectangular spiral inductor using Taguchi's Design of Experiment. PGS is decrease method of parasite component by silicon substrate among dielectric loss reduction method. Using taguchi's design of experiment, each parameter is fixed upon that PGS high poison(A), slot spacing(B), strip width(C) and overlap turn number(D) of PGS design parameter. Then we verified that percentage contribution and design sensitivity analysis of each parameter and level by signal to noise ratio of larger-the-better type. We consider percentage contribution and design sensitivity of each parameter and level, and then verify that model of optimization for PGS is lower inductance decreasing ratio and higher Q-factor increasing ratio by EM simulation.

  • PDF

Multiple Moving Object Tracking Using The Background Model and Neighbor Region Relation (배경 모델과 주변 영역과의 상호관계를 이용한 다중 이동 물체 추적)

  • Oh, Jeong-Won;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.361-369
    • /
    • 2002
  • In order to extract motion features from an input image acquired by a static CCD-camera in a restricted area, we need a robust algorithm to cope with noise sensitivity and condition change. In this paper, we proposed an efficient algorithm to extract and track motion features in a noisy environment or with sudden condition changes. We extract motion features by considering a change of neighborhood pixels when moving objects exist in a current frame with an initial background. To remove noise in moving regions, we used a morphological filter and extracted a motion of each object using 8-connected component labeling. Finally, we provide experimental results and statistical analysis with various conditions and models.

Study of the structural damage identification method based on multi-mode information fusion

  • Liu, Tao;Li, AiQun;Ding, YouLiang;Zhao, DaLiang
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.333-347
    • /
    • 2009
  • Due to structural complicacy, structural health monitoring for civil engineering needs more accurate and effectual methods of damage identification. This study aims to import multi-source information fusion (MSIF) into structural damage diagnosis to improve the validity of damage detection. Firstly, the essential theory and applied mathematic methods of MSIF are introduced. And then, the structural damage identification method based on multi-mode information fusion is put forward. Later, on the basis of a numerical simulation of a concrete continuous box beam bridge, it is obviously indicated that the improved modal strain energy method based on multi-mode information fusion has nicer sensitivity to structural initial damage and favorable robusticity to noise. Compared with the classical modal strain energy method, this damage identification method needs much less modal information to detect structural initial damage. When the noise intensity is less than or equal to 10%, this method can identify structural initial damage well and truly. In a word, this structural damage identification method based on multi-mode information fusion has better effects of structural damage identification and good practicability to actual structures.

Sizing Design Sensitivity Analysis and Optimization of Radiated Noise from a Thin-body (박판 구조물의 방사 소음에 대한 크기설계 민감도 해석 및 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1038-1043
    • /
    • 2003
  • There are many industrial applications including thin-body structures such as fins. For the numerical modeling of radiation of sound from thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation fails to yield a reliable solution. Therefore, many researchers have tried to solve the thin-body acoustic problems. In the area of the design sensitivity analysis (DSA) and optimization methods, however, there has been just a few study reported. Especially fur the thin-body acoustics, however, no further study in the DSA and optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used for the sizing DSA and optimization. Since the gradient-based method is used for the optimization, it is important to have accurate gradients (design sensitivities) of the objective function and constraints with respect to the design variables. The DSA formulations are derived through chain-ruled derivatives using the finite element method (FEM) and BEM by using the direct differentiation and continuum variation concepts. The proposed approaches are implemented and validated using a numerical example.

  • PDF

Magnetic Sensor Using Giant Magneto-Impedance Effect (거대자기임피던스 효과를 이용한 자기 센서)

  • Choi, Kyoo-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1057-1064
    • /
    • 2017
  • High sensitivity magnetic sensor having foreign metal detection capability is proposed utilizing giant magneto-impedance effect. Strip sensor showed the increasing output voltage when the external magnetic field was applied along with strip from strip grounding point, although the initial DC voltage varied depending on the pointing direction of strip sensor. Proposed sensor was able to eliminate more than half of background noise using active noise filter to achive high sensitivity, and it showed the capability to detect magnetized foreign metal object independent of ambient electro-magnetic noise and earth magnet. In case of ferrous sphere, the metal detection up to 0.8mm diameter was experimentally demonstrated at 5mm distance from strip sensor.

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

Quantitative Lateral Force Calibration of V-shaped AFM Cantilever (V 형상을 가지는 원자현미경 Cantilever의 정량적 마찰력 교정)

  • Lee, Huijun;Kim, Kwanghee;Kim, Hyuntae;Kang, Boram;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.203-211
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used as a tool, not only for imaging surfaces, but also for measuring surface forces and mechanical properties at the nano-scale. Force calibration is crucial for quantitatively measuring the forces that act between the AFM probe of a force sensing cantilever and a sample. In this work, the lateral force calibrations of a V-shaped cantilever were performed using the finite element method, multiple pivot loading, and thermal noise methods. As a result, it was shown that the multiple pivot loading method was appropriate for the lateral force calibration of a V-shaped cantilever. Further, through crosschecking of the abovementioned methods, it was concluded that the thermal noise method could be used for determining the lateral spring constants as long as the lateral deflection sensitivity was accurately determined. To obtain the lateral deflection sensitivity from the sticking portion of the friction loop, the contact stiffness should be taken into account.

Shape Design Optimization of Inductive Position Sensor to Improve Sensitivity (유도형 변위 센서의 민감도 향상을 위한 형상 최적 설계)

  • 홍준희;이동주;신우철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.250-254
    • /
    • 2001
  • The resolution of analog sensor is determined by its sensitivity and amplitude of noise. This paper presents modeling of inductive gap sensor base on equivalent magnetic circuit and analysis of sensitivity. We can simulate static characteristic of inductive gap sensor using this model. Computer simulation show that sensor's sensitivity is affected by magnetic flux's leakage and fringing, and that they are affected by shape of sensor probe. Base on this, we designed shape of inductive position sensor probe.

  • PDF

An Initial Synchronization Method to Enhance Receive Sensitivity of the GPS Receiver for Reference Stations (기준국용 GPS 수신기의 수신감도 향상을 위한 초기동기 방법)

  • Park Sang-Hyun;Shin Jae-Ho;Park Jeong-Yeol
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.235-240
    • /
    • 2006
  • In order to enhance receive sensitivity in noisy environment, the previous initial synchronization method of GPS receiver for reference stations adopts not only the coherent integration method but also the non-coherent integration method. However, the previous GPS initial synchronization method causes the non-coherent integration loss, which is a dominant factor among the signal acquisition losses in noisy environment. And the non-coherent integration loss increases with the strength of noise signal. In this pa-per, a GPS initial synchronization method is proposed to enhance receive sensitivity of GPS receiver for reference stations in noisy environment. This paper presents that the proposed GPS initial synchronization method suppresses the non-coherent integration loss. Furthermore, with regard to the mean acquisition time, it is shown that the number of the search cells of the proposed GPS initial synchronization method is much fewer than that of the previous GPS initial synchronization method.

  • PDF