• 제목/요약/키워드: Noise Sensitivity

검색결과 1,064건 처리시간 0.047초

도로교통소음의 주파수에 따른 불쾌도 민감도 연구 (Study of the Annoyance Sensitivity for the Frequency Band of Road Traffic Noise)

  • 조경숙;황대선;조연;허덕재
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.398-404
    • /
    • 2007
  • In this study, the sensitivity of annoyance was investigated by the subjective jury test for the variations of the frequency components along with various sound pressure levels of sixteen environmental noise sources. Annoyance was, also, evaluated for the road traffic noises. Sound pressure levels were $54{\sim}84\;dB$ which individually divided frequency components with eight bands of equally three bark bands. The results show that vehicle traffic noise is recognized as the most serious environment noise source. The sensitivity of human perception of annoyance in frequency bands is quite different from A-weighting curve. The annoyance found out to be more sensitive in high frequency region and reached its maximum in 3.4 kHz.

보조변수법을 이용한 Zwicker 라우드니스의 설계민감도 (Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method)

  • 왕세명;권대일;김좌일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

측정대상물의 표면조도에 따른 광파이버 센서 특성고찰 (The Characteristics of Fiber Optic Sensor on the Surface Roughness of Target)

  • 박한수;정택구;홍준희;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.283-286
    • /
    • 2002
  • In fiber optic sensor, the error of the measurement is influenced by the surface roughness of the target and surroundings, especially the outside light. To reduce or modify this error, the sensitivity of the fiber optic sensor and the noise change by the surface roughness of the target should be known. The purpose of this paper is to observe the sensitivity of the fiber optic sensor and the noise according to the surface roughness of the target.

  • PDF

자동차 소음, 진동 저감을 위한 차체 설계 프로그램 개발 (Design Tool Development of NVH of Vehicle Body)

  • 왕세명;이제원;기성현;문희곤;서진관
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.57-63
    • /
    • 1998
  • In this paper, a design tool using continuum design sensitivity analysis (DSA) method has been developed for noise, vibration, and harshness (NVH). Design sensitivity is formulated, implemented numerically, and named SENS1. SENS1 can compute the design sensitivity using model and response files of MSC/NASTRAN of vehicle. A of real vehicle model is considered to validate SENS1. Numerical study shows SENS1 is a useful tool to improve NVH performances of vehicle body.

  • PDF

공동주택 소음에 대한 감성 평가 (IDENTIFYING EMOTIONAL ELEMENTS OF APARTMENT NOISE)

  • 민윤기;은희준;조문재;손진훈
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1999년도 춘계학술발표논문집 논문집
    • /
    • pp.39-44
    • /
    • 1999
  • The purpose of this study was to extract emotional dimensions from Korean adjectives relating to apartment noise. Noise-related 296 Korean adjectives were extracted from a dictionary and three evaluators selected 96 adjectives from those by removing very similar ones in meaning. Two types of 96 7-point scales were conducted to college students for evaluation, whether each adjective describes apartment noise appropriately. From this evaluation, 28 adjectives having above 4.5 points were selected. Again, 8 different types of 7-point scales on 378 adjective pairs(28 x 27/2) were administrated to separate college students to evaluate the degree of similarity between 28 adjectives. Based upon this evaluation, 14 adjectives were finally selected and scores on similarity sere analyzed through two different statistical analyses (Multi-dimensional scale and Cluster analysis). The results showed that three dimensions (displeasure, sensitivity and perceived loudness) exist in peoples' emotional response state to apartment noise. The previous studies have treated annoyance and sensitivity as separate measures to noise. However, this study showed that these two factors were on the same emotional dimension labeled as 'sensitivity' In addition, new dimension, labeled as 'displeasure', was found.

  • PDF

Zwicker 라우드니스에 대한 설계 민감도 해석 및 최적화 (DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION OF ZWICKER'S LOUDNESS)

  • 강정환;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.149-154
    • /
    • 2004
  • The design sensitivity analysis of Zwicker's loudness with respect to structural sizing design variables is developed. The loudness sensitivity in the critical band is composed of two equations, the derivative of main specific loudness with respect to 1/3-oct band level and global acoustic design sensitivities. The main specific loudness is calculated by using FEM, BEM tools. i.e. MSC/NASTRAN and SYSNOISE. And global acoustic sensitivity is calculated by combining acoustic and structural sensitivity using the chain rule. Structural sensitivity is obtained by using semi-analytical method and acoustic sensitivity is implemented numerically using the boundary element method. For sensitivity calculation, sensitivity analyzer of loudness (SOLO), in-house program is developed. A 1/4 scale car cavity model is optimized to show the effectiveness of the proposed method.

  • PDF

Development of charge sensitive amplifiers based on various circuit board substrates and evaluation of radiation hardness characteristics

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1503-1510
    • /
    • 2020
  • Ultra-low noise charge sensitive amplifiers (CSAs) based on various types of circuit board substrates, such as FR4, Teflon, and ceramics (Al2O3) with two different designs, PA1 and PA2, have been developed. They were tested to see the noise effect from the dielectric loss of the substrate capacitance before and after irradiation. If the electronic noise from the CSAs is to be minimized and the energy resolution enhanced, the shaping time has to be optimized for the detector, and a small feedback capacitance of the CSA is favorable for a better SNR. Teflon- and ceramic-based PA1 design CSAs showed better noise performance than the FR4-based one, but the Teflon-based PA1 design showed better sensitivity than ceramic based one at a low detector capacitance (<10 pF). In the PA2 design, the equivalent noise and the sensitivity were 0.52 keV FWHM for a silicon detector and 7.2 mV/fC, respectively, with 2 ㎲ peaking time and 0.1 pF detector capacitance. After 10, 100, 103, 104, and 105 Gy irradiation the ENC and sensitivity characteristics of the developed CSAs based on three different substrate materials are also discussed.

박판구조물의 방사소음에 대한 형상 설계민감도 해석 (Shape Design Sensitivity Analysis For The Radiated Noise From Thin body)

  • 이제원;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.90-95
    • /
    • 2001
  • A continuum-based shape design sensitivity analysis (DSA) method is presented for the acoustic radiation from thin body. The normal derivative integral formulation is employed as an analysis formulation and differentiated directly by using material derivative to get the acoustic shape design sensitivity. In the acoustic sensitivity formulation, derivative coefficients of the structural normal velocities on the surface are required as the input. Thus, the shape design sensitivities of structural velocities on the surface with respect to the shape change are also calculated with continuum approach. A simple disk is considered as a numerical example to validate the accuracy and efficiency of the analytical shape design sensitivity equations derived in this research. This research should be very helpful to design an application involving thin body and to change its acoustic characteristics.

  • PDF

수송체 구조물의 진동특성에 관한 설계민감도 해석 (Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure)

  • 이재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1992년도 추계학술대회논문집; 반도아카데미, 20 Nov. 1992
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

판넬기여도와 설계민감도를 이용한 구조기인소음 설계프로세스 (A Design Process for Structural Borne Noise using Panel Contribution and Design Sensitivity)

  • 김효식;김헌희;조효진;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.806-811
    • /
    • 2007
  • In this study, we propose a more systematic design process for the structure-borne noise. The proposed way consists of 4 steps: Problem definition, Cause analysis, Development of counter-measure and Validation. Especially, we improved the second step: Cause analysis. According to the PCA(Panel Contribution Analysis), a reduction in vibration of the panels of which panel contribution is positive and larger, results in a reduction in structure-borne noise. We have, however, met the case in which the concept of PCA is no valid in a few vehicle tests. In order to understand this phenomenon, we compared the major panels selected by PCA with the one chosen by DSA(Design Sensitivity Analysis). After investigating the difference between the two results, a more improved process is suggested. The proposed one for the second step in the design process consists of not only the previous way: PCA with deformation analysis results but also DSA. It is finally validated that the proposed design process decreases the sound pressure of the concerned noise transfer function more than 3.5 dB.

  • PDF