• Title/Summary/Keyword: Noise Robust

Search Result 1,308, Processing Time 0.026 seconds

Robust Design of an ER Damper using Taguchi Method (다구찌법을 이용한 ER 댐퍼의 강건 설계)

  • 윤영민;배광식;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • This Paper presents a robust design of an Electrorheological(ER) damper using Taguchi method. Taguchi method is a robust design method that determines control parameters in the presence of noise effect. Electrode length, electrode gap, base oil viscosity and the weight ratio of ER particles are chosen for the control parameters and the temperature is considered to be a noise factor. The sensitivity of each factor with signal-to-noise(S/N) ratio and analysis of variance are investigated. The analysis results show that the electrode length and base oil viscosity of the ER fluid mostly affect the damping force in the absence of electric field. On the other hand, when the voltage is applied to the ER damper, the electrode length and the weight ratio of ER fluid exhibit significant effect. Based on the Taguchi method, an optimal configuration was designed and the robustness of the designed ER damper was validated by comparing the analysis and experimental results.

  • PDF

A Review on the Taguchi Method and Its Alternatives for Dynamic Robust Design (다구치의 동적 강건설계와 그 대안에 관한 고찰)

  • Kim, Seong-Jun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.351-360
    • /
    • 2013
  • Taguchi's robust design is a method for quality improvement by making a system insensitive to uncontrollable variations incurred by noise factors and it has received much attention in a wide range of engineering fields. Robust design can be broadly classified into static and dynamic ones. This paper is concerned with dynamic robust design. Taguchi suggested to use a signal-to-noise ratio as a robustness measure, but there has been much debate and criticism on its blind use. In order to cope with this drawback, many alternatives have been proposed. They are divided into performance measure modeling (PMM) and response function modeling (RFM) approaches. In this paper, both PMM and RFM approaches for dynamic robust design are reviewed. An example for illustration is provided as well.

Convergence Analysis of Noise Robust Modified AP(affine projection) Algorithm

  • Kim, Hyun-Tae;Park, Jang-Sik
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • According to increasing projection order, the AP algorithm bas noise amplification problem in large background noise. This phenomenon degrades the performances of the AP algorithm. In this paper, we analyze convergence characteristic of the AP algorithm and then suggest a noise robust modified AP algorithm for reducing this problem. The proposed algorithm normalizes the update equation to reduce noise amplification of AP algorithm, by adding the multiplication of error power and projection order to auto-covariance matrix of input signal. By computer simulation, we show the improved performance than conventional AP algorithm.

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 팬터그래프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2003
  • Pantograph design Process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings(FW-H) equation is used to calculate the flow induced sound pressure level in aeroacoustics. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25 m away from Pantograph. Based on aerodynamic(CFD) and aeroacoustic(FW-H) analysis data, the optimal sizing and Positioning of panhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. In this paper, two-step optimization method is used as a parameter design procedure. It is executed using signal to noise(S/N) ratio and analysis of means(ANOM) method. So Thus, an optimal level of design parameters Is extracted to minimize the disconnection ration between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 판토그라프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1235-1241
    • /
    • 2001
  • Pantograph design process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore Pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings (FW-H) equation is used to calculate the flow induced sound pressure level. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25m away from panhead contact strips. Based on aerodynamic (CFD) and aeroacoustic (FW-H) analysis data, the optimal sizing and positioning ofpanhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. Using a parameter design procedure associated with signal-to-noise (SIN) ratio and sensitivity analysis, an optimal level of design parameters are extracted to minimize the disconnection ratio between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

  • PDF

An Efficient and Easy Discretizing Method for the Treatment of Noise Factors in Robust Design

  • Lanzotti, Antonio;Vanacore, Amalia
    • International Journal of Quality Innovation
    • /
    • v.8 no.3
    • /
    • pp.188-197
    • /
    • 2007
  • In this work, an efficient and easy statistical method to find an equivalent discrete distribution for a continuous random variable (r.v.) is proposed. The proposed method is illustrated by applying it to the treatment of the anthropometrical noise factors in the context of Robust Ergonomic Design.

Application of robust fault detection for DC motor considering system uncertainty (불확실성을 고려한 DC Motor의 견실한 이상검출)

  • 김대우;유호준;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.856-859
    • /
    • 1997
  • In this paper we treat the application of fault detection method in DC motor having both model mismatch and noise problems. A fault detection method presented by Kwon et al. (1994) for SISO systems has been here experimented. The model mismatch includes here linearization error as well as undermodelling. Comparisons are made with the real plant, DC motor. The experimental result of robust fault detection method is shown to have good performance via with the alternative fault detection method which do not account noise.

  • PDF

Generalized Robust Multichannel Frequency-Domain LMS Algorithms for Blind Channel Identification

  • Chung, Ik-Joo;Clements, Mark A.
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.130-133
    • /
    • 2012
  • Recently, several noise-robust adaptive multichannel LMS algorithms have been proposed based on the spectral flatness of the estimated channel coefficients in the presence of additive noise. In this work, we propose a general form for the algorithms that integrates the existing algorithms into a common framework. Computer simulation results are presented and demonstrate that a new proposed algorithm gives better performance compared to existing algorithms in noisy environments.

Robust Design of vehicle Intoner Noise using Taguchi method and Substructure Synthesis Method (다구찌법과 부분구조합성법을 이용한 차실소음 강건설계)

  • Kim, Hyo-Sig;Tanneguy, DE-KERDREL;Kim, Hee-Jin;Cho, Hyo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.134-139
    • /
    • 2005
  • This paper presents a robust design of vehicle interior noise using Taguchi method and a substructure synthesis method with a hybrid model. Firstly, the proposed method identifies the critical process of the concerned interior noise through a TPA (Transfer Path Analysis). Secondly, a strategy for a robust design is discussed, in which the major noise factor among uncertainties in the process is quality distribution of rubber bushes connecting a cradle and a trimmed body. Thirdly, a virtual test model fer the process is developed by applying a substructure synthesis method with a hybrid modeling approach. Fourthly, virtual tests are carried out according to the predefined tables of orthogonal array in Taguchi robust design process. The process was performed under 2 sub-steps. The first step is sensitivity analysis of 31 panels, and the other step is weight optimization of mass dampers on sensitive panels. Finally, two vehicles with the proposed countermeasures were validated. The proposed method reduces 87.5% of trials of measurements due to the orthogonal arrays and increases robustness by 8.6dB of S/N ratio and decreases $5\;dB(A){\sim}10\;dB(A)$ of interior noise in the concerned range of RPM.

  • PDF

Determination of Gate Position Considering Robustness in Injection Mold Design (사출금형 설계에서 강건성을 고려한 게이트 위치의 결정)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.113-118
    • /
    • 2017
  • In this paper, we propose a design procedure for determining the gate position robust to changes and inherent fluctuations in the process conditions during injection molding. To evaluate the robustness of the gate position, the signal-to-noise ratio is used, and noise conditions are implemented using orthogonal arrays, where the process variables are considered as noise factors and possible process fluctuations are set as the levels of the noise factors. To show the usefulness of the proposed robust design procedure, we apply it to a computer CPU baseplate. As a result, it is shown that a robust gate position can be determined that reduces the average warpage deflection by 2.4% and 1.7%, and the variance by 3.4% and 5.1%, compared to the two initial gate positions.