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Recently, several noise-robust adaptive multichannel LMS 
algorithms have been proposed based on the spectral flatness 
of the estimated channel coefficients in the presence of additive 
noise. In this work, we propose a general form for the 
algorithms that integrates the existing algorithms into a 
common framework. Computer simulation results are 
presented and demonstrate that a new proposed algorithm 
gives better performance compared to existing algorithms in 
noisy environments. 

Keywords: Adaptive multichannel least-mean-square (LMS) 
algorithm, blind channel identification (BCI), noise robust. 

I. Introduction 
Blind channel identification has received a great deal of 

attention in various fields of science and engineering. A 
number of single and multichannel identification algorithms 
have been proposed in recent years. The inherent diversity of 
multichannel systems gives many advantages, which has led to 
multichannel identification schemes increasingly being 
preferred over their single channel counterparts.  

Huang and Benesty proposed both the adaptive multichannel 
LMS (MCLMS) algorithm [1] and the adaptive multichannel 
frequency-domain LMS (MCFLMS) algorithm [2]. Since then, 
many variants have been proposed. The main drawback of 
Huang’s algorithms is that they lack robustness to additive 
noise. Even under moderate noise conditions, the algorithms 
often do not converge. Several algorithms claiming   
robustness have been proposed. Some of them, however, 
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require specific information on the acoustic impulse responses, 
such as the positions and amplitudes of direct path coefficients 
[3], and others show partial robustness [4]. Recently, Haque 
and Hasan proposed noise robust algorithms based on the 
spectral flatness of the estimated channel coefficients and 
showed through computer simulations that these algorithms 
converged for relatively high noise levels [5]-[7]. To the best of 
our knowledge, their algorithms are the only algorithms that 
converge under noisy environments without specific 
information. 

In this letter, we propose a more general form for the update 
equations which gives better performance under the various 
environments. 

II. Robust MCFLMS Algorithms 

In this section, we briefly present Haque’s robust MCFLMS 
algorithms. We consider an M-channel system whose impulse 
responses are ,0 ,1 , 1 ,
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of the true channel impulse responses by solely using noise-
corrupted observations ( ),  1, 2, ,kx n k M= … , that is, the signal 
received at the k-th sensor, we first define a cost function in the 
frequency domain, J(m), as 
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where H denotes Hermitian transpose, , ( )i j me is the 
frequency-domain block error signal between the i-th and j-th 
channels, and m is the frame index. The update equation of the 
normalized MCFLMS (NMCFLMS) algorithm can be 
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expressed as [2] 
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where ρ is the step size for the update algorithm and 
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the unconstrained gradient vector 10 ( )k J m∇  can be expressed 
as  
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Using stacked vectors, (2) can be rewritten as [2] 

10 10 1 10ˆ ˆ( 1) ( ) ( ) ( ),m m m J mρ −+ = − ∇h h P         (4) 

where P(m) is a diagonal matrix with diagonal terms of Pk(m) 
in sequential order. 

To cope with the NMCFLMS algorithm’s lack of robustness 
to additive noise, Haque and Hasan proposed robust 
MCFLMS algorithms based on the fact that the Fourier 
domain energy of a channel impulse response is approximately 
uniformly distributed. First, they introduced an excitation 
function to the update equation to ensure robustness of the 
NMCFLMS algorithm as [5] 
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where 10 ( )mh is the excitation function in the frequency 
domain and  is the l2 norm. Haque and Hasan showed that 
the update equation converges, provided that 10 ( )mh  
resembles the true channel coefficients [5]. Since the true 
channel coefficients have a reasonably flat wide-band spectrum, 
they estimated the excitation function as 
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We will refer to (5) to (7) as the RNMCFLMS-I algorithm.    
Second, Haque and Hasan proposed another robust algorithm 

where a penalty function that ensures spectral flatness was 
introduced. The final update equation is given by [6] 
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where Q2(m) is a (2ML×2ML) diagonal matrix whose diagonal 
elements are 
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We will refer to (8) to (11) as the RNMCFLMS-II algorithm. 
Meanwhile, in the original RNMCFLMS-I and 

RNMCFLMS-II algorithms, the coupling factors β1(m) and 
β2(m) do not include the proportional constant parameters, η1 
and η2, respectively, that is, η1 and η2 are fixed to 1. However, 
in [8], the authors implied the necessity of the proportional 
constant parameters by defining the coupling factor as  
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where they used Re{ }, which denotes the real part, instead of  
| |. However, they did not mention its role or effect on 
convergence, nor did they suggest its proper values. Our 
experiment revealed that the coupling factors affected 
convergence behavior significantly; therefore, they should be 
properly determined. We can say empirically that these values 
can be set to 1 for random source signals except for η2 under 
high SNR, which shows poor performance, and should be 
greater than 1 for speech or colored source signals. 

III. Generalized Robust MCFLMS Algorithms 

Since the RNMCFLMS-I and the RNMCFLMS-II 
algorithms were derived from different starting points—one 
from the introduction of the excitation function and the other 
from the minimization of the penalty function—these two 
algorithms look ostensibly different. (See (7), (9) and (11).) 
However, it can be shown that the two algorithms can be 
integrated into a general form. Equation (7) is equivalent to  
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Expressing this in the form of (9), we obtain  
10 10

1
ˆ( ) ( ) ( )m m m=h Q h ,           (14) 

where Q1(m) is a (2ML×2ML) diagonal matrix whose diagonal 
elements are 
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With some manipulation over the terms inside the absolute 
operations in β1(m) and β2(m), and using (11) and (15), we can 
integrate the two algorithms into one general update equation 
as  
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where Q(m) is a (2L×2L) diagonal matrix whose diagonal 
elements are 
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If γ=1 and η=η1, the above equations reduce to the 
RNMCFLMS-I algorithm, and if γ=2 and η=η2, they reduce to 
the RNMCFLMS-II algorithm. From the viewpoint of the 
excitation function, the estimated excitation function must 
resemble the true channel coefficients. In (7), the spectra of the 
true channel coefficients are assumed to be perfectly flat. 
However, since the spectra of the true channel coefficients are 
not completely flat, some modification is needed. One 
observation is that the proposed algorithm gives flexibility for 
controlling the shape of the spectrum through the parameter γ. 
However, when the parameter γ is not an integer, the 
computational complexity of the algorithm is increased due to 
an exponential operation. We will refer to the proposed 
algorithm as GRNMCFLMS and show through computer 
simulation that this modification improves performance in 
section IV. 

IV. Simulations Results 

In this section, we demonstrate the performance of the 
proposed algorithm by carrying out computer simulations 
using acoustic multichannel systems, and also compare the 
performance of the proposed GRNMCFLMS algorithm with 
the RNMCFLMS algorithms. For consistent comparisons, we 
used the same experimental setup as reported in previous work 
[6]. The dimensions of the room were chosen to be (5 m×    
4 m×3 m). A linear array consisting of M=5 microphones with 
uniform separation of d=0.2 m along the y-axis was used in the 
simulation. The first microphone and source were placed at 
(1.0 m, 1.5 m, 1.6 m) and (2.0 m, 1.2 m, 1.6 m), respectively.  

 

Fig. 1. Comparison of convergence behaviors of GRNMCFLMS
and RNMCFLMS algorithms for M=5 channels, L=512,
and T60=0.1 s acoustic channel coefficients with white
Gaussian input at SNR=10 dB. 

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
–18

–16

–14

–12

–10

–8

Frame index, m 

N
PM

 (d
B

) 

RNMCFLMS-I (η1=1) 
RNMCFLMS-II (η2=1)

GRNMCFLMS (γ =1.4, η=1) 

 
 

 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
–22

–18

–14

–10

–6

–2

N
PM

 (d
B

) 

GRNMCFLMS (γ =1.4, η=1)

RNMCFLMS-II (η2=1)

RNMCFLMS-II (η2=2) RNMCFLMS-I (η1=2)

RNMCFLMS-I (η1=1)

×104

Frame index, m 

Fig. 2. Comparison of convergence behaviors of GRNMCFLMS 
and RNMCFLMS algorithms for M=5 channels, L=512, 
and T60=0.1 s acoustic channel coefficients with white 
Gaussian input at SNR=25 dB.  
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Fig. 3. Effect of variation in γ on convergence of GRNMCFLMS 
algorithm for M=5 channels, L=512, and T60=0.1 s 
acoustic channel coefficients with white Gaussian input at 
SNR=25 dB.  

 
All of the impulse responses were generated using the well-
known image method with reverberation times T60=0.1 s for a 
white Gaussian source, and T60=0.55 s for a speech source. The 
length of each channel impulse response is 512 for a white 
Gaussian source and 4,400 for a speech source. The sampling  



ETRI Journal, Volume 34, Number 1, February 2012 Ikjoo Chung and Mark A. Clements   133 

 

Fig. 4. Comparison of convergence behaviors of GRNMCFLMS
and RNMCFLMS algorithms for M=5 channels, L=4,400,
and T60=0.55 s acoustic channel coefficients with speech
input at SNR=25 dB. 
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frequency was 8 kHz. In all cases, the step size ρ was fixed at 
0.5. Figures 1 and 2 show the simulation results for the white 
Gaussian source at SNR=10 and SNR=25, respectively. 
Normalized projection misalignment (NPM) [9] was used as 
a performance metric. These figures indicate that the 
GRNMCFLMS algorithm outperforms both RNMCFLMS 
algorithms, though the improvement is not significant at low 
SNR. In this simulation, parameter γ was found to be suitable 
at 1.4. Figure 3 shows the performance improvement of the 
GRNMCFLMS algorithm for various values of γ. With 
values of γ greater than 1.4, the performance no longer 
improved and, in fact, deteriorated as the value approached 2, 
which showed the same performance as that of the 
RNMCFLMS-II at γ=2. Figure 4 shows the performance 
comparison of the GRNMCFLMS algorithm with the 
RNMCFLMS algorithms for speech source signals. It can be 
also seen that the GRNMCFLMS algorithms shows best 
performance over the other algorithms at γ=1.4. Through 
simulations under various experimental settings, we 
determined that values of γ=1.3 to 1.5 were suitable for 
random signals at both low and high SNRs, and speech or 
colored signals at relatively high SNR. Smaller values of 
γ=1.0 to 1.2 were suitable for speech or colored signals at low 
SNR. 

V. Conclusion 

In this work, we proposed a generalized robust multichannel 
frequency domain algorithm integrating the existing algorithms. 
The flexibility of the proposed method obtained by 
generalization leads to performance improvement over these 
existing algorithms. We carried out comparisons of the 
proposed algorithm with other robust algorithms for acoustic 
multichannel. It was shown that the proposed algorithm 
presents good convergence characteristics for both random 

source signals and speech source signals under the various 
noise conditions. 
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