• Title/Summary/Keyword: Noise Robust

Search Result 1,308, Processing Time 0.028 seconds

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

Development of Rotation Invariant Real-Time Multiple Face-Detection Engine (회전변화에 무관한 실시간 다중 얼굴 검출 엔진 개발)

  • Han, Dong-Il;Choi, Jong-Ho;Yoo, Seong-Joon;Oh, Se-Chang;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.116-128
    • /
    • 2011
  • In this paper, we propose the structure of a high-performance face-detection engine that responds well to facial rotating changes using rotation transformation which minimize the required memory usage compared to the previous face-detection engine. The validity of the proposed structure has been verified through the implementation of FPGA. For high performance face detection, the MCT (Modified Census Transform) method, which is robust against lighting change, was used. The Adaboost learning algorithm was used for creating optimized learning data. And the rotation transformation method was added to maintain effectiveness against face rotating changes. The proposed hardware structure was composed of Color Space Converter, Noise Filter, Memory Controller Interface, Image Rotator, Image Scaler, MCT(Modified Census Transform), Candidate Detector / Confidence Mapper, Position Resizer, Data Grouper, Overlay Processor / Color Overlay Processor. The face detection engine was tested using a Virtex5 LX330 FPGA board, a QVGA grade CMOS camera, and an LCD Display. It was verified that the engine demonstrated excellent performance in diverse real life environments and in a face detection standard database. As a result, a high performance real time face detection engine that can conduct real time processing at speeds of at least 60 frames per second, which is effective against lighting changes and face rotating changes and can detect 32 faces in diverse sizes simultaneously, was developed.

Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition (홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘)

  • Jang, Young-Kyoon;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2007
  • Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.

Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments (웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.10-21
    • /
    • 2008
  • The present paper propose a real-time moving object recognition and tracking method using the wavelet-based neural network and invariant moments. Candidate moving region detection phase which is the first step of the proposed method detects the candidate regions where a pixel value changes occur due to object movement based on the difference image analysis between continued two image frames. The object recognition phase which is second step of proposed method recognizes the vehicle regions from the detected candidate regions using wavelet neurual-network. From object tracking Phase which is third step the recognized vehicle regions tracks using matching methods of wavelet invariant moments bases to recognized object. To detect a moving object from image sequence the candidate regions detection phase uses an adaptive thresholding method between previous image and current image as result it was robust surroundings environmental change and moving object detections were possible. And by using wavelet features to recognize and tracking of vehicle, the proposed method decrease calculation time and not only it will be able to minimize the effect in compliance with noise of road image, vehicle recognition accuracy became improved. The result which it experiments from the image which it acquires from the general road image sequence and vehicle detection rate is 92.8%, the computing time per frame is 0.24 seconds. The proposed method can be efficiently apply to a real-time intelligence road traffic surveillance system.

A State-of-Charge estimation using extended Kalman filter for battery of electric vehicle (확장칼만필터를 이용한 전기자동차용 배터리 SOC 추정)

  • Ryu, Kyung-Sang;Kim, Byungki;Kim, Dae-Jin;Jang, Moon-seok;Ko, Hee-sang;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.15-23
    • /
    • 2017
  • This paper reports a SOC(State-of-Charge) estimation method using the extended Kalman filter(EKF) algorithm, which can allow real-time implementation and reduce the error of the model and be robust against noise, to accurately estimate and evaluate the charging/discharging state of the EV(Electric Vehicle) battery. The battery was modeled as the first order Thevenin model for the EKF algorithm and the parameters were derived through experiments. This paper proposes the changed method, which can have the SOC to 0% ~ 100% regardless of the aging of the battery by replacing the rated capacity specified in the battery with the maximum chargeable capacity. In addition, This paper proposes the EKF algorithm to estimate the non-linearity interval of the battery and simulation result based on Ah-counting shows that the proposed algorithm reduces the estimation error to less than 5% in all intervals of the SOC.

Effect of frequency dependent multipath fading on non-coherent underwater communication system (주파수 종속 다중경로 페이딩이 비코히어런트 수중통신시스템에 미치는 영향)

  • Kim, Jongjoo;Park, Jihyun;Bae, Minja;Park, Kyu-Chil;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.295-302
    • /
    • 2016
  • Underwater acoustic communication channel is often defined as a multipath fading channel since the multipath arrivals from various paths interfere with each other and cause frequency dependent constructive or destructive interference in received signals. Therefore signal-to-noise ratio (SNR) of received signal fluctuates as a function of frequency. In addition, sea surface fluctuation induces frequency dependent time variant signal fading due to coherent component variation of surface bounce path. The frequency shift keying (FSK) system is known to be less sensitive and more robust under these interference and fading, and M-ary frequency shift keying (MFSK) system is adopted to increase a data rate. In this study, a bit error rate (BER) of 4 channels 4FSK system are examined in shallow sea multipath channel. Experimental results show that RS code reduces efficiently the BER of 4FSK system since frequency dependent time-varying fading is characterized to give burst errors. The BER of a different data rate or different source-to-receiver range depends on not only the channel coherent bandwidth but also frequency dependent multipath fading.

Automatic speech recognition using acoustic doppler signal (초음파 도플러를 이용한 음성 인식)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.74-82
    • /
    • 2016
  • In this paper, a new automatic speech recognition (ASR) was proposed where ultrasonic doppler signals were used, instead of conventional speech signals. The proposed method has the advantages over the conventional speech/non-speech-based ASR including robustness against acoustic noises and user comfortability associated with usage of the non-contact sensor. In the method proposed herein, 40 kHz ultrasonic signal was radiated toward to the mouth and the reflected ultrasonic signals were then received. Frequency shift caused by the doppler effects was used to implement ASR. The proposed method employed multi-channel ultrasonic signals acquired from the various locations, which is different from the previous method where single channel ultrasonic signal was employed. The PCA(Principal Component Analysis) coefficients were used as the features of ASR in which hidden markov model (HMM) with left-right model was adopted. To verify the feasibility of the proposed ASR, the speech recognition experiment was carried out the 60 Korean isolated words obtained from the six speakers. Moreover, the experiment results showed that the overall word recognition rates were comparable with the conventional speech-based ASR methods and the performance of the proposed method was superior to the conventional signal channel ASR method. Especially, the average recognition rate of 90 % was maintained under the noise environments.

Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image (대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법)

  • Kim, Bo-Ram;Park, Keun-Hye;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2011
  • In this paper, we proposed the method to detect brain tumor region in MR images. Our method is composed of 3 parts, detection of tumor slice, detection of tumor region and tumor boundary detection. In the tumor slice detection step, a slice which contains tumor regions is distinguished using symmetric analysis in 3D brain volume. The tumor region detection step is the process to segment the tumor region in the slice distinguished as a tumor slice. And tumor region is finally detected, using spatial feature and symmetric analysis based on the cluster information. The process for detecting tumor slice and tumor region have advantages which are robust for noise and requires less computational time, using the knowledge of the brain tumor and cluster-based on symmetric analysis. And we use the level set method with fast marching algorithm to detect the tumor boundary. It is performed to find the tumor boundary for all other slices using the initial seeds derived from the previous or later slice until the tumor region is vanished. It requires less computational time because every procedure is not performed for all slices.

Random Balance between Monte Carlo and Temporal Difference in off-policy Reinforcement Learning for Less Sample-Complexity (오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도)

  • Kim, Chayoung;Park, Seohee;Lee, Woosik
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • Deep neural networks(DNN), which are used as approximation functions in reinforcement learning (RN), theoretically can be attributed to realistic results. In empirical benchmark works, time difference learning (TD) shows better results than Monte-Carlo learning (MC). However, among some previous works show that MC is better than TD when the reward is very rare or delayed. Also, another recent research shows when the information observed by the agent from the environment is partial on complex control works, it indicates that the MC prediction is superior to the TD-based methods. Most of these environments can be regarded as 5-step Q-learning or 20-step Q-learning, where the experiment continues without long roll-outs for alleviating reduce performance degradation. In other words, for networks with a noise, a representative network that is regardless of the controlled roll-outs, it is better to learn MC, which is robust to noisy rewards than TD, or almost identical to MC. These studies provide a break with that TD is better than MC. These recent research results show that the way combining MC and TD is better than the theoretical one. Therefore, in this study, based on the results shown in previous studies, we attempt to exploit a random balance with a mixture of TD and MC in RL without any complicated formulas by rewards used in those studies do. Compared to the DQN using the MC and TD random mixture and the well-known DQN using only the TD-based learning, we demonstrate that a well-performed TD learning are also granted special favor of the mixture of TD and MC through an experiments in OpenAI Gym.