• Title/Summary/Keyword: Noise Removal

Search Result 503, Processing Time 0.024 seconds

Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments (AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.250-252
    • /
    • 2022
  • Recently, with the development of IoT technology and AI, unmanned and automated systems are progressing in various fields, and various application technologies are being studied in systems using algorithms such as object detection, recognition, and tracking. In the case of a system operating based on an image, noise removal is performed as a pre-processing process, and precise noise removal is sometimes required depending on the environment of the system. In this paper, we propose a modified central weight filter algorithm using pixel division of local regions to minimize the blurring that tends to occur in the filtering process and to emphasize the details of the resulting image. In the proposed algorithm, when a pixel of a local area is divided into two areas, the center of the dominant area among the divided areas is set as a criterion for the weight filter algorithm. The resulting image is calculated by convolving the transformed center weight with the pixel value inside the filtering mask.

  • PDF

Analysis of the Threshold Voltage Instability of Bottom-Gated ZnO TFTs with Low-Frequency Noise Measurements (Low-Frequency Noise 측정을 통한 Bottom-Gated ZnO TFT의 문턱전압 불안정성 연구)

  • Jeong, Kwang-Seok;Kim, Young-Su;Park, Jeong-Gyu;Yang, Seung-Dong;Kim, Yu-Mi;Yun, Ho-Jin;Han, In-Shik;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.545-549
    • /
    • 2010
  • Low-frequency noise (1/f noise) has been measured in order to analyze the Vth instability of ZnO TFTs having two different active layer thicknesses of 40 nm and 80 nm. Under electrical stress, it was found that the TFTs with the active layer thickness of 80 nm shows smaller threshold voltage shift (${\Delta}V_{th}$) than those with thickness of 40 nm. However the ${\Delta}V_{th}$ is completely relaxed after the removal of DC stress. In order to investigate the cause of this threshold voltage instability, we accomplished the 1/f noise measurement and found that ZnO TFTs exposed the mobility fluctuation properties, in which the noise level increases as the gate bias rises and the normalized drain current noise level($S_{ID}/{I_D}^2$) of the active layer of thickness 80 nm is smaller than that of active layer thickness of thickness 40 nm. This result means that the 80 nm thickness TFTs have a smaller density of traps. This result correlated with the physical characteristics analysis performmed using XRD, which indicated that the grain size increases when the active layer thickness is made thicker. Consequently, the number of preexisting traps in the device increases with decreasing thickness of the active layer and are related closely to the $V_{th}$ instability under electrical stress.

Adaptive Noise Removal Based on Nonstationary Correlation (영상의 비정적 상관관계에 근거한 적응적 잡음제거 알고리듬)

  • 박성철;김창원;강문기
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.278-287
    • /
    • 2003
  • Noise in an image degrades image quality and deteriorates coding efficiency. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other in order not to Increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean-square-error filter. Justification for the proposed image model is presented and effectiveness of the proposed algorithm is demonstrated experimentally.

Planar Curve Smoothing with Individual Weighted Averaging (개별적 가중치 평균을 이용한 2차원 곡선의 스무딩)

  • Lyu, Sungpil
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1194-1208
    • /
    • 2017
  • A traditional average smoothing method is designed for smoothing out noise, which, however, unintentionally results in smooth corner points on the curvature accompanied with a shrinkage of curves. In this paper, we propose a novel curve smoothing method via polygonal approximation of the input curve. The proposed method determines the smoothing weight for each point of the input curve based on the angle and approximation error between the approximated polygon and the input curve. The weight constrains a displacement of the point after smoothing not to significantly exceed the average noise error of the region. In the experiment, we observed that the resulting smoothed curve is close to the original curve since the point moves toward the average position of the noise after smoothing. As an application to digital cartography, for the same amount of smoothing, the proposed method yields a less area reduction even on small curve segments than the existing smoothing methods.

Development of Removal Techniques for PRC Outlier & Noise to Improve NDGPS Accuracy (국토해양부 NDGPS 정확도 향상을 위한 의사거리 보정치의 이상점 및 노이즈 제거기법 개발)

  • Kim, Koon-Tack;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.63-73
    • /
    • 2011
  • The Pseudorange Corrections (PRC), which are used in DGPS as calibration messages, can contain outliers, noise, and anomalies, and these abnormal events are unpredictable. When those irregular PRC are used, the positioning error gets higher. In this paper, we propose a strategy of detecting and correcting outliers, noise, and anomalies by modeling the changing pattern of PRC through polynomial curve fitting techniques. To validate our strategy, we compared positioning errors obtained without PRC calibation with those with PRC calibration. As a result, we found that our algorithm performs very well; the horizontal RMS error was 3.84 m before the correction and 1.49 m after the correction.

Depth Estimation and Intermediate View Synthesis for Three-dimensional Video Generation (3차원 영상 생성을 위한 깊이맵 추정 및 중간시점 영상합성 방법)

  • Lee, Sang-Beom;Lee, Cheon;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1070-1075
    • /
    • 2009
  • In this paper, we propose new depth estimation and intermediate view synthesis algorithms for three-dimensional video generation. In order to improve temporal consistency of the depth map sequence, we add a temporal weighting function to the conventional matching function when we compute the matching cost for estimating the depth information. In addition, we propose a boundary noise removal method in the view synthesis operation. after finding boundary noise areas using the depth map, we replace them with corresponding texture information from the other reference image. Experimental results showed that the proposed algorithm improved temporal consistency of the depth sequence and reduced flickering artifacts in the virtual view. It also improved visual quality of the synthesized virtual views by removing the boundary noise.

Detection Based - Adaptive Windowed Nonlinear Filters for Removal of One-Side Impulse Noise in Infrared Image (적외선 영상의 단측형 충격잡음 제거를 위한 검출기반 적응윈도우 비선형 필터)

  • LEE JE-IL
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.83-88
    • /
    • 2005
  • In this paper, detection based - adaptive windowed nonlinear filters(DB-AWNF) are proposed for removing one-side impulse noise in infrared image. They are composed of impulse detector and window-size-variable median filters. Impulse detector checks whether current pixel is impulse or not using range function and nonlinear location estimator. If impulse is detected, current pixel is filtered according to four kinds of local masks by use of median filter. If not. current pixel is delivered to output like identity filter. In qualitative view, the proposed could have removed heavy corrupted noise up to $20\%$ and reserved the details of image. In quantitative view, PSNR was measured. The proposed could have 13 - 31[dB] more improved performance than those of median($3{\times}3$) filter and 18 - 25[dB] more improved performance than those of median($5{\times}5$) filter.

Conditional fuzzy cluster filter for color image enhancement under the mixed color noise (혼합된 칼라 잡음하에서 칼라 영상 향상을 위한 조건적인 퍼지 클러스터 필터)

  • Eum, Kyoung-Bae;Han, Seo-Won;Lee, Joon-Whoan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3718-3726
    • /
    • 1999
  • Color image is more effective than gray one in human visual perception. Therefore, color image processing becomes important area. Color images are often corrupted by noises due to the input sensor, channel transmission errors and so on. Some filtering techniques such as vector median, mean filter, and vector $\alpha-trimmed$ mean filter have been used for color noise removal. Among them, vector $\alpha-trimmed$ mean filter gave the best performance in the mixed color noise. But, there are edge shift and blurring effect because vector $\alpha-trimmed$ mean filter is uniformly processed across the image. So, we proposed a conditional fuzzy cluster filter to improve this problems. Simulation results showed that the proposed scheme improves the NCD measure and visual quality over the conventional vector $\alpha-trimmed$ mean filter in the mixed color noise.

  • PDF

The Removal of Noisy Bands for Hyperion Data using Extrema (극단화소를 이용한 Hyperion 데이터의 노이즈 밴드제거)

  • Han, Dong-Yeob;Kim, Dae-Sung;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.275-284
    • /
    • 2006
  • The noise sources of a Hyperion image are mainly due to the atmospheric effects, the sensor's instrumental errors, and A/D conversion. Though uncalibrated, overlapping, and all deep water absorption bands generally are removed, there still exist noisy bands. The visual inspection for selecting clean and stable processing bands is a simple practice, but is a manual, inefficient, and subjective process. In this paper, we propose that the extrema ratio be used for noise estimation and unsupervised band selection. The extrema ratio was compared with existing SNR and entropy measures. First, Gaussian, salt and pepper, and Speckle noises were added to ALI (Advanced Land Imager) images with relatively low noises, and the relation of noise level and those measures was explored. Second, the unsupervised band selection was performed through the EM (Expectation-Maximization) algorithm of the measures which were extracted from a Hyperion images. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The experimental result showed that the extrema ratio could be used effectively for band selection of Hyperion images.

Modified Gaussian Filter Algorithm using Quadtree Segmentation in AWGN Environment (AWGN 환경에서 쿼드트리 분할을 사용한 변형된 가우시안 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1176-1182
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, automation, and unmanned work are progressing in various fields, and the importance of image processing, which is the basis of AI object recognition, is increasing. In particular, in systems that require detailed data processing, noise removal is used as a preprocessing step, but the existing algorithm does not consider the noise level of the image, so it has the disadvantage of blurring in the filtering process. Therefore, in this paper, we propose a modified Gaussian filter that determines the weight by determining the noise level of the image. The proposed algorithm obtains the noise estimate for the AWGN of the image using quadtree segmentation, determines the Gaussian weight and the pixel weight, and obtains the final output by convolution with the local mask. To evaluate the proposed algorithm, it was simulated compared to the existing method, and superior performance was confirmed compared to the existing method.