• Title/Summary/Keyword: Noise Parameters

Search Result 2,447, Processing Time 0.039 seconds

Measurement of Noise Parameters Using 6-Port Network (Invited Paper) (6-포트 회로망을 이용한 잡음 파라미터 측정)

  • Yeom, Kyung-Whan;Ahmed, Abdule-Rahman
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.119-126
    • /
    • 2015
  • The information about noise parameters is essential in the design of low noise amplifier. In the past, the noise parameters were measured using an impedance tuner and noise figure analyzer. Recently, the authors proposed the method of measuring the noise parameters using the 8-port network without the aid of the mechanically driven impedance tuner. However, the 8-port method still requires the noise source and causes the complexity in the measurements. In this paper, a novel measurement method of the noise parameters without the noise source using 6-port network is proposed. Based on the proposed 6-port method, the noise parameters of 10 dB attenuator whose noise parameters can be theoretically determined were measured and the measured noise parameters are compared with those measured using the previous 8-port network method. As a result, the accuracy of the measured noise parameters using 6-port network is found to be comparable to the previous 8-port network method.

Online estimation of noise parameters for Kalman filter

  • Yuen, Ka-Veng;Liang, Peng-Fei;Kuok, Sin-Chi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.361-381
    • /
    • 2013
  • A Bayesian probabilistic method is proposed for online estimation of the process noise and measurement noise parameters for Kalman filter. Kalman filter is a well-known recursive algorithm for state estimation of dynamical systems. In this algorithm, it is required to prescribe the covariance matrices of the process noise and measurement noise. However, inappropriate choice of these covariance matrices substantially deteriorates the performance of the Kalman filter. In this paper, a probabilistic method is proposed for online estimation of the noise parameters which govern the noise covariance matrices. The proposed Bayesian method not only estimates the optimal noise parameters but also quantifies the associated estimation uncertainty in an online manner. By utilizing the estimated noise parameters, reliable state estimation can be accomplished. Moreover, the proposed method does not assume any stationarity condition of the process noise and/or measurement noise. By removing the stationarity constraint, the proposed method enhances the applicability of the state estimation algorithm for nonstationary circumstances generally encountered in practice. To illustrate the efficacy and efficiency of the proposed method, examples using a fifty-story building with different stationarity scenarios of the process noise and measurement noise are presented.

A Study on the Improvement of Noise Performance by Optimizing Machining Process Parameters on Ball Screw (가공최적화를 통한 볼 스크류의 소음성능 향상에 관한 연구)

  • Xu, Zhezhu;Choi, Jong-Hun;Kim, Hyun-Ku;Shin, Joong-Ho;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.54-61
    • /
    • 2011
  • Ball screw systems are largely used in industry for motion control and motor applications. But the problem of noise, which really perplexes us, is highly correlated with the quality in ball screw systems all the way. In this paper, machining process parameters were evaluated in respects of technique, business, produce and quality to verify which impact influences the noise most. In order to adjust and compare, two comparison groups were set with the present parameters bench mark. Different ball screws were produced as specimens for the noise tests. Through comparing the noise performance of different parameters in the machining process respectively, a group of optimized machining process parameters were obtained. Another noise test was proceeded to know how noise performance was improved by optimizing the machining process parameters. At last, surface roughness tests have been done to know how surface roughness improved by optimization. The improvement of surface roughness is the main factor influences the noise performances.

Analysis and extraction method of noise parameters for short channel MOSFET thermal noise modeling (단채널 MOSFET의 열잡음 모델링을 위한 잡음 파라메터의 분석과 추출방법)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2655-2661
    • /
    • 2009
  • In this paper, an accurate noise parameters for thermal noise modeling of short channel MOSFET is derived and extracted. Fukui model for calculating the noise parameters of a MOSFET is modified by considering effects of parasitic elements in short channel, and it is compared with conventional noise model equation. In addition, for obtaining the intrinsic noise sources of devices, noise parameters(minimum noise figure $F_{min}$, equivalent noise resistance $R_n$ optimized source admittance $Y_{opt}=G_{opt}+B_{opt}$) in submicron MOSFETs is extracted. With this extraction method, the intrinsic noise parameters of MOSFET without effects of probe pad and extrinsic parasitic elements from RF noise measurements can be directly obtained.

Two Noise Parameter Measurement Methods Using Spectrum Analyzer and Comparison (스펙트럼 분석기를 이용한 2가지 잡음 파라미터 측정방법과 비교)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1072-1082
    • /
    • 2015
  • In this paper, we propose two noise parameter measurement methods using spectrum analyzer. First method, we measure a noise correlation matrix using the 6-port network, and we calculate noise parameters using measured a noise correlation matrix. Second method, we directly measure noise figures of the DUT for source impedance changes, and then noise parameters are extracted from the measured noise figures. In order to measure a noise figure, we present a method of measuring a noise figure of the DUT that have arbitrary source impedances using spectrum analyzer and a method of eliminating a noise effect of a impedance tuner. Finally, the noise parameters of a passive and active DUT using proposed two methods are compared. The comparison shows that the two results obtained from for the two methods give almost identical noise parameters. The noise parameters measured by 6-port network accurately predict measured noise figures of the DUT for source impedance changes, and noise parameters measured by 6-port network is verified from the comparison.

Aerodynamic Noise Analysis of High Speed Wind Turbine System for Design Parameters of the Rotor Blade (고속 회전 풍력 시스템의 로터 설계 인자에 따른 공력 소음 해석 연구)

  • Lee, Seung-Min;Kim, Ho-Geon;Son, Eun-Kuk;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.521-524
    • /
    • 2009
  • This study describes aerodynamic noise of high speed wind turbine system, which is invented as a new concept in order to reduce the torque of main shaft, for design parameters of the rotor blade. For parametric study of high speed rotor aerodynamic noise, Unsteady Vortex Lattice Method with Nonlinear Vortex Correction Method is used for analysis of wind turbine blade aerodynamic and Farassat1A and Semi-Empirical are used for low frequency noise and airfoil self noise. Parameters are chord length, twist and rotational speed for this parametric research. In the low frequency range, the change of noise is predicted the same level as each parameters varies. However, in case of broadband noise of blade, the change of rotational speed makes more variation of noise than other parameters. When the geometric angles of attack are fixed, as the rotational speed is increased by 5RPM, the noise level is increased by 4dB.

  • PDF

Analysis of Physical Parameters for the Evaluation of HVAC Diffuser Noise (공기조화 취출구 소음 평가를 위한 물리지수 분석)

  • Park, Hyeon-Ku;Kim, Hang;Go, Seong-Seok;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • The diffuser noise of HVAC(heating ventilating and air-conditioning) uses dB(A) or NC as a indoor noise criteria that ASHRAE represents, and there is no specific guide line for application. According to the previous study, there are some problems like that even though the sound level of sound source is same, the NC shows different values, which makes the noise rating confused. This problem is caused by the frequency characteristics of sound source and its sound level. Therefore, appropriate evaluation method should be considered based on the subjective responses. This study aims to analyze the physical parameters appropriate for the evaluation of HVAC diffuser noise. To achieve this, recording of sound sources, calculation of physical parameters and psycho-acoustic experiment were carried out and the results were derived from the correlation analysis between physical parameters and subjective evaluatio

  • PDF

ACF/IACF and Zwicker Parameters Analysis on Floor Impact Noise (표준바닥충격원의 ACF/IACF 및 Zwicker 파라메타 분석)

  • ;;Yoichi Ando
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.945-950
    • /
    • 2001
  • Floor impact noise has been evaluated by investigating the temporal and spectral characteristics of the noise. The noises generated by different impactors were analyzed to find out whether there is any correlation with the factors of ACF /IACF (Autocorrelation Function/Inter-aural Cross-correlation Function) [1] and Zwicker parameters [2]. Experiments were undertaken to compare the objective and subjective parameters of the floor impact noises generated by a bang/tapping machine, a rubber ball [3], and a walker. As a result, it was found that $\phi$ (0) and IACC extracted from ACF/IACF, and Loudness, Unbiased Annoyance from Zwicker parameters showed high correlation with subjective evaluations of loudness concerning floor impact noises. In addition, it was revealed that jumping is similar to the ball.

  • PDF

Measurement of the Noise Parameters of On-Wafer Type DUTs Using 8-Port Network (8-포트회로망을 이용한 온-웨이퍼형 DUT의 잡음파라미터 측정)

  • Lee, Dong-Hyun;Ahmed, Abdule-Rahman;Lee, Sung-Woo;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.808-820
    • /
    • 2014
  • In this paper, we fabricated two on-wafer type DUT(Device-Under-Test)s; a 10-dB attenuator and an amplifier using commercially available MMIC and we proposed the measurement method of the noise parameters for the two fabricated DUTs. Since the 10-dB attenuator DUT is a passive device, its noise parameters can be accurately determined when its S-parameters are measured. In the case of the amplifier DUT, its noise parameters are available in the datasheet. Hence, the measured noise parameters using the proposed method can be assessed by comparing with the known noise parameters. The noise parameter measurement method having been presented by the authors requires the S-parameters of the 8-port network used in the measurement and limited to coaxial type DUTs. When on-wafer probes are included in the 8-port network, the 8-port S-parameters requires the measurements with different kinds of connectors. In this paper, we obtained the 8-port S-parameters using the Smart-Cal function in the network analyzer. The measured noise parameters shows about ${\pm}0.2dB$ fluctuations for $NF_{min}$. Other noise parameters with the frequency change show good agreement with the expected results.

Design Parameter Analysis on the Performance and Noise of Axial Fan (축류형 홴 성능 및 소음에 영향을 미치는 설계변수 분석)

  • 김기황;이승배;주재만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.275-281
    • /
    • 2001
  • While basic input parameters for the performance and noise of axial fan are flow rate, pressure rise, rotating speed, and fan diameter, the geometric parameters of blade are sweep angle, solidity, and camber angle. The sweep angle does not affect fan performance much, but on fan noise significantly. Solidity and camber angle are very critical design parameters acting on the fan performance directly. The solidity and camber angle are closely related, therefore they have to be carefully determined for the low-noise and high-performance fan. In This paper, different design points are selceted and also geometric parameters are deliberately changed for the comparison of fan noise. As a result, at the same performance, the input rotational speed affects radiated noise more significantly than others. When solidity and camber angle are increased more than those by iDesignFan/sup TM/ program, more noise is experienced. The blade sweep method and blade numbers at same solidity are observed to results in different levels of performance and noise.

  • PDF