• 제목/요약/키워드: Noise Excitation Factor

검색결과 42건 처리시간 0.019초

토크 변동에 의한 백래시를 가진 헬리컬 기어의 비선형 동적 해석 (Nonlinear Dynamic Analysis of Helical Gears with Backlash by Torque Fluctuation)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제20권7호
    • /
    • pp.677-684
    • /
    • 2010
  • Backlashes of gears provide gears for good lubrication and for removal of the interference between teeth by the wear and manufacturing errors. The backlash is the strong nonlinear factor to gears. This study deals with nonlinear modeling of helical gears with backlash. Excitation of helical gears comes from torque variation, the tooth surface error, and the periodical change of mesh stiffness. To study the effect of torque fluctuation, equation of motion for the single degree of freedom torsional model of helical gears with the periodical change of mesh stiffness and the backlash was derived. The Newmark beta method and the Newton-Raphson method were used to obtain the nonlinear behaviors of mesh forces of helical gears. All excitation frequencies initially caused the tooth separation and single-sided impacts of the gear pair and eventually led to the normal tooth contact. However, some special excitation frequencies caused the single-sided impacts in the entire time as well as the initial time. Damping increase reduced the duration of single-sided impacts, and the backlash increase caused those in the entire time domain.

마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과 (Approximate solution for a building installed with a friction damper : revisited and new result)

  • 민경원;성지영;이성경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

유색잡음 매개변수가진과 외부가진을 받는 확률 시스템의 응답해석 (RESPONSE ANALYSIS OF A STOCHSTIC UNDER PARAMETRIC ND EXTERNL EXCITATION HAVING COLORED NOISE CHARACTERISTICS)

  • 허훈;백종한;오진형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 추계학술대회논문집; 반도아카데미, 26 Nov. 1993
    • /
    • pp.55-59
    • /
    • 1993
  • Interaction between system and disturbance results in system with time-dependent parameter. Parameter variation due to interaction has random characteristics. Most of the randomly varying parameters in control problem is regarded as white noise random process, which is not a realistic model. In real situation those random variation is colored noise random process. Modified F-P-K equation is proposed to get the response of the random parametric system using some correction factor. Proposed technique is employed to obtain the colored noise parametric system response and confirmed via Monte-Carlo Simulation.

  • PDF

저주파 스피커 출력음 대비 차량 진동 특성 연구 (A Research on the Vibration Characteristics of Vehicle due to Speaker Sound at Low Frequency)

  • 김기창;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.909-917
    • /
    • 2007
  • Recently the trend of automobile industry is that IQS evaluation index against a sensitivity quality is increasing. To reduce rattle noise due to speaker sound at low frequencies, it is required the advanced investigation of a package tray panel and a door module panel. This paper optimized the design parameters of package tray panel according to the theoretical background about robust design and suggested the design guideline for resonance avoidance and the reduction of vibrational sensitivity considering the excitation frequency of woofer speaker. In addition, it is suggested the design guideline of a door module panel through the sensitivity analysis in case of the speaker excitation. Finally, the design factor analysis of the quality deviation of a mother-car will make it possible to guarantee the stable characteristics of vehicle vibration in the early stage of vehicle development. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

시험 방법에 따른 바(Bar) 형 시편의 동특성 비교 (Study on the Test Method for Measuring Vibration Damping Properties using Bae Type Specimen)

  • 이용봉;권휴상;정성수;전병수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1939-1944
    • /
    • 2000
  • Different test methods were used to measure and compare the loss factor of a steel beam. They are free vibration logarithmic decay method, half-power bandwidth method using narrow-band analysis, wide-band analysis method with inverse FFT. In these tests, specimens are clamped at one end. Free vibration method and half-power bandwidth method gave good results. Effect of vibration pick-ups were tested. We also tried center excitation method but could not obtain loss factor.

  • PDF

항공기 지상 진동 시험 및 동특성 모델의 개선 (The Ground Vibration Test on an Aircraft and FE Model Update)

  • 유홍주;변관화;박금룡
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.690-699
    • /
    • 1998
  • This paper discusses the techniques, procedures and the results of the ground vibration test(GVT) performed on the development aircraft and the simple procedure of FE model updating technique from the GVT results. The GVT was carried out using random excitation technique with MIMO(Multi-Input-Multi-Output) data acquistion method, and taking full advantage of poly-reference global parameter estimation technique to identify the vibration modes. In dynamic FE modeling, the aircraft was represented by beam elements and all dynamic analysis was performed using MSC/NASTRAN for this model. In updating procedure, the stiffness of the beam model was adjusted iteratively so as to get the natural frequencies and mode shapes close to the GVT results.

  • PDF

차량주행시 동력전달계의 강제진동 해석 (Computer Simulation of Powertrain Forced Torsional Vibration)

  • 최은오;안병민;홍동표
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.853-860
    • /
    • 1997
  • For this study, the multi-degree of freedom analysis model of torsional vibration was developed. This model is combined with mass moment of inertia and torsional spring in two wheel drive and four wheel drive vehicle. We compared and analyzed torsional vibration characteristics by natural frequencies and mode shapes which are obtained by free vibration analysis of this model. And we studied torsional vibration contribution of driveline elements by performing the forced vibration analysis of engine excitation torque. The validity of this model is demonstrated by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF

배열 마이크로폰을 이용한 레일 방사 소음 측정에 관한 이론 해석 (Theoretical Analysis on the Array Microphone Measurement for Noise from Rails)

  • 유정수;장승호;권휴상
    • 한국음향학회지
    • /
    • 제33권4호
    • /
    • pp.238-247
    • /
    • 2014
  • 본 논문에서는 철도 전동 소음의 주요 소음원인 레일 소음의 방사 특성을 이론적으로 해석하고 배열 마이크로폰을 이용한 레일 소음 측정 시 발생하는 현상들에 관해 이론적으로 고찰하였다. 철도 궤도는 국내 고속철도 콘크리트 도상 궤도를 대상으로 하였으며, 레일에 고속의 이동 하중이 작용하는 경우에 대한 진동 및 소음 방사 특성을 해석하였다. 본 연구를 통해 이동 하중이 작용할 때 발생하는 레일의 소음 방사 특성을 파악하였으며, 배열 마이크로폰을 이용한 레일 소음 측정시 빔 각도가 배열 마이크로폰 출력 음압에 중요하게 작용함을 확인하였다. 따라서 배열 마이크로폰을 이용해 레일 소음을 규명하기 위해서는 레일의 방사 특성을 반영한 배열 마이크로폰 빔 각도 설정이 필요함을 이해하였다.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

후륜구동 승용차의 디퍼렌셜 진동저감에 관한 연구 (A Study on the Reduction of Differential Vibration of FR Passenger Car)

  • 최은오
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.316-321
    • /
    • 1997
  • The purpose of this study is to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined, the validity of the simulation model was checked by the field test and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration differential gear by applying flexible coupling.

  • PDF