• 제목/요약/키워드: Noise Estimation

검색결과 1,990건 처리시간 0.038초

히스토그램 기반의 과추정 방식을 이용한 잡음에 강인한 음성인식 (Noise-Robust Speech Recognition Using Histogram-Based Over-estimation Technique)

  • 권영욱;김형순
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.53-61
    • /
    • 2000
  • 잡음환경에서의 음성인식 성능향상을 위해서는 서로 다른 잡음환경으로 인한 mismatch를 줄이는 것이 중요하다. 이를 위해 계산이 간단하고 잡음환경에서 비교적 우수한 성능을 내고 있는 스펙트럼 차감법이 널리 사용되고 있다. 본 논문에서는 스펙트럼 차감법을 적용하기 위한 잡음 스펙트럼 추정방법으로 히스토그램 처리방법을 도입한다. 히스토그램 처리방법은 음성이 아닌 구간의 검출이 필요없으며 시간에 따라 변화하는 시변잡음에도 적용 가능한 장점이 있다. 그러나 히스토그램 처리방법으로 신뢰도 높은 잡음 스펙트럼의 평균값을 추정하더라도 스펙트럼 차감법을 적용했을 때의 잔여 잡음의 문제가 발생한다. 이를 해결하기 위하여 잡음추정 과정에 사용되었던 히스토그램의 분포특성을 고려한 새로운 over-estimation 적용방식을 제안한다. 제안된 방식은 측정된 잡음의 분포에 따라 적응적으로 over-estimation의 정도를 결정함으로써 SNR 변화에 따른 영향이 적은 장점이 있다. 자동차 소음 환경에서의 화자독립 고립단어 인식실험 결과, 기존의 over-estimation factor를 적용한 경우보다 제안된 방식의 인식성능이 개선되었다.

  • PDF

에지 검출을 이용한 잡음 예측 (Noise Estimation Using Edge Detection)

  • 김영로;동성수
    • 전자공학회논문지
    • /
    • 제50권5호
    • /
    • pp.281-286
    • /
    • 2013
  • 본 논문에서는 에지 검출을 이용한 잡음 예측 방법을 제안하였다. 이 방법은 필터 기반으로 한 잡음 예측 방법이다. 에지 검출은 잡음 예측에 영향을 미치는 구조나 세밀한 정보들을 제거하기 위함이다. 에지 검출을 하기 위하여, 영상의 세밀함에 안정적인 수정한 래셔널 필터를 사용하였다. 제안한 잡음 예측 방법은 다양한 형태의 영상들의 잡음 예측에 더욱 효율적으로 적용되며 기존의 필터 기반으로 한 잡음 예측 방법들보다 좋은 결과를 얻는다.

Online estimation of noise parameters for Kalman filter

  • Yuen, Ka-Veng;Liang, Peng-Fei;Kuok, Sin-Chi
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.361-381
    • /
    • 2013
  • A Bayesian probabilistic method is proposed for online estimation of the process noise and measurement noise parameters for Kalman filter. Kalman filter is a well-known recursive algorithm for state estimation of dynamical systems. In this algorithm, it is required to prescribe the covariance matrices of the process noise and measurement noise. However, inappropriate choice of these covariance matrices substantially deteriorates the performance of the Kalman filter. In this paper, a probabilistic method is proposed for online estimation of the noise parameters which govern the noise covariance matrices. The proposed Bayesian method not only estimates the optimal noise parameters but also quantifies the associated estimation uncertainty in an online manner. By utilizing the estimated noise parameters, reliable state estimation can be accomplished. Moreover, the proposed method does not assume any stationarity condition of the process noise and/or measurement noise. By removing the stationarity constraint, the proposed method enhances the applicability of the state estimation algorithm for nonstationary circumstances generally encountered in practice. To illustrate the efficacy and efficiency of the proposed method, examples using a fifty-story building with different stationarity scenarios of the process noise and measurement noise are presented.

적응적 필터링을 이용한 가우시안 잡음 예측 (Gaussian noise estimation using adaptive filtering)

  • 조범석;김영로
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.13-18
    • /
    • 2012
  • In this paper, we propose a noise estimation method for noise reduction. It is based on block and pixel-based noise estimation. We assume that an input image is contaminated by the additive white Gaussian noise. Thus, we use an adaptive Gaussian filter and estimate the amount of noise. It computes the standard deviation of each block and estimation is performed on pixel-based operation. The proposed algorithm divides an input image into blocks. This method calculates the standard deviation of each block and finds the minimum standard deviation block. The block in flat region shows well noise and filtering effects. Blocks which have similar standard deviation are selected as test blocks. These pixels are filtered by adaptive Gaussian filtering. Then, the amount of noise is calculated by the standard deviation of the differences between noisy and filtered blocks. Experimental results show that our proposed estimation method has better results than those by existing estimation methods.

중량충격음의 청감 평가에 대한 배경 소음의 영향 (Investigating the Effect of Background Noise on Magnitude Estimation of Heavy-weight Impact Noise)

  • 정영;송희수;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.202-207
    • /
    • 2003
  • The purpose of this study was to investigate the effect of background noise on loudness magnitude estimation of Heavy-weight impact noise. Relationship between loudness magnitude estimation and estimation methods about floor impact noise had appeared low in apartment which receive much effect of background noise. Then, to need new estimation method abut effect of background noise. Masking effects by background noise is increased steadily, there is a continuous transition between an audible impact noise and one that is totally masked. Result 1 hat analyze interrelationship of phychoacoustical data and values through Zwicker Parameters, to Investigate that an estimation experiment about Annoyance need.

  • PDF

Estimation of Noise Level in Complex Textured Images and Monte Carlo-Rendered Images

  • Kim, I-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.381-394
    • /
    • 2016
  • The several noise level estimation algorithms that have been developed for use in image processing and computer graphics generally exhibit good performance. However, there are certain special types of noisy images that such algorithms are not suitable for. It is particularly still a challenge to use the algorithms to estimate the noise levels of complex textured photographic images because of the inhomogeneity of the original scenes. Similarly, it is difficult to apply most conventional noise level estimation algorithms to images rendered by the Monte Carlo (MC) method owing to the spatial variation of the noise in such images. This paper proposes a novel noise level estimation method based on histogram modification, and which can be used for more accurate estimation of the noise levels in both complex textured images and MC-rendered images. The proposed method has good performance, is simple to implement, and can be efficiently used in various image-based and graphic applications ranging from smartphone camera noise removal to game background rendition.

NOISE VARIANCE ESTIMATION OF SAR IMAGE IN LOG DOMAIN

  • Chitwong S.;Minhayenud S.;Intajag S.;Cheevasuvit F.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.574-576
    • /
    • 2004
  • Since variance of noise is important parameter for a noise filter to reduce noise in image and the performance of noise filter is dependent on estimated variance. In this paper, we apply additive noise variance estimation method to estimate variance of speckle noise of synthetic aperture radar (SAR) imagery. Generally, speckle noise is in multiplicative model, logarithmic transformation is then used to transform multiplicative model into additive model. Here, speckle noise is generally modeled as Gamma distribution function with different looks. The additive noise variance estimation is processed in log domain. The synthesis image and real image of SAR are implemented to test and confirm results and show that more accurate estimation can be achieved.

  • PDF

Robust Approach for Channel Estimation in Power Line Communication

  • Huang, Jiyan;Wang, Peng;Wan, Qun
    • Journal of Communications and Networks
    • /
    • 제14권3호
    • /
    • pp.237-242
    • /
    • 2012
  • One of the major problems for accurate channel estimation in power line communication systems is impulsive noise. Traditional channel estimation algorithms are based on the assumption of Gaussian noise, or the need to locate the positions of impulsive noise. The algorithms may lose optimality when impulsive noise exists in the channel, or if the location estimation of impulsive noise is inaccurate. In the present paper, an effective channel estimation algorithm based on a robust cost function is proposed to mitigate impulsive noise. The proposed method can provide a closed-form solution, and the application of robust estimation theory enables the proposed method to be free from localization of impulsive noise and thus can guarantee that the proposed method has better performance. Simulations verified the proposed algorithm.

에지 검출을 이용한 동영상 잡음 예측 (Noise Estimation using Edge Detection in Moving Pictures)

  • 김영로;오태명
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.207-212
    • /
    • 2015
  • 움직임 영상에서 에지 검출을 이용하여 잡음을 예측하는 방법을 제안한다. 에지 검출은 잡음 예측에 영향을 주는 구조와 세밀함을 제거하는 역할을 한다. 에지를 검출하기 위하여 잡음에 강한 소벨과 형상학 닫힘 연산자를 사용한다. 제안하는 잡음 예측 방법은 다양한 종류의 동영상에 효율적으로 적용될 수 있으며 기존 잡음 예측 방법들 보다 향상된 결과를 가진다. 또한, 제안하는 알고리즘은 영상과 비디오 응용에서 효율적으로 적용할 수 있다.

구조동특성해석을 위한 ARMAX 모형의 식별과 선형추정 알고리즘 (Identification of ARMAX Model and Linear Estimation Algorithm for Structural Dynamic Characteristics Analysis)

  • 최의중;이상조
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.178-187
    • /
    • 1999
  • In order to identify a transfer function model with noise, penalty function method has been widely used. In this method, estimation process for possible model parameters from low to higher order proceeds the model identification process. In this study, based on linear estimation method, a new approach unifying the estimation and the identification of ARMAX model is proposed. For the parameter estimation of a transfer function model with noise, linear estimation method by noise separation is suggested instead of nonlinear estimation method. The feasibility of the proposed model identification and estimation method is verified through simulations, namely by applying the method to time series model. In the case of time series model with noise, the proposed method successfully identifies the transfer function model with noise without going through model parameter identification process in advance. A new algorithm effectively achieving model identification and parameter estimation in unified frame has been proposed. This approach is different from the conventional method used for identification of ARMAX model which needs separate parameter estimation and model identification processes. The consistency and the accuracy of the proposed method has been verified through simulations.

  • PDF