• Title/Summary/Keyword: Noise Detection

Search Result 2,553, Processing Time 0.028 seconds

The generalized methodology of signal detection in noise

  • Tuzlukov, Vyacheslav-P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.255-260
    • /
    • 1992
  • It is reported on the methodology of signal detection in noise which is based on a comparison of statistical parameters of observation sample from region of frequency-time noise space where a signal may be present and observation sample from region of this noise space and it is known a priori about the latter that the signal is absent in this region.

  • PDF

Weak Random Signal Detection:In Signal-Dependent Noise (약한 확률적 신호 검파 : 신호의 존성 잡음이 있는 경우)

  • 송익호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.332-339
    • /
    • 1988
  • Using a generalized observation model, in which one can express the effects of non-additive noise such as signal-dependent noise and multiplicative noise in addition to purely-additive noise, the problem of weak random-signal detection is investigated. It is shown that the test statistics of locally optimum detectors for detection of weak random signals in signal-dependent noise model are interesting extensions of those in purely-additive noise model. This result is a complement to the result for weak random-signal detction in multiplicative noise model.

  • PDF

Depth Image Based Feature Detection Method Using Hybrid Filter (융합형 필터를 이용한 깊이 영상 기반 특징점 검출 기법)

  • Jeon, Yong-Tae;Lee, Hyun;Choi, Jae-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.395-403
    • /
    • 2017
  • Image processing for object detection and identification has been studied for supply chain management application with various approaches. Among them, feature pointed detection algorithm is used to track an object or to recognize a position in automated supply chain systems and a depth image based feature point detection is recently highlighted in the application. The result of feature point detection is easily influenced by image noise. Also, the depth image has noise itself and it also affects to the accuracy of the detection results. In order to solve these problems, we propose a novel hybrid filtering mechanism for depth image based feature point detection, it shows better performance compared with conventional hybrid filtering mechanism.

Modified Adaptive Gaussian Filter for Removal of Salt and Pepper Noise

  • Li, Zuoyong;Tang, Kezong;Cheng, Yong;Chen, Xiaobo;Zhou, Chongbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2928-2947
    • /
    • 2015
  • Adaptive Gaussian filter (AGF) is a recently developed switching filter to remove salt and pepper noise. AGF first directly identifies pixels of gray levels 0 and 255 as noise pixels, and then only restored noise pixels using a Gaussian filter with adaptive variance based on the estimated noise density. AGF usually achieves better denoising effect in comparison with other filters. However, AGF still fails to obtain good denoising effect on images with noise-free pixels of gray levels 0 and 255, due to its severe false alarm in its noise detection stage. To alleviate this issue, a modified version of AGF is proposed in this paper. Specifically, the proposed filter first performs noise detection via an image block based noise density estimation and sequential noise density guided rectification on the noise detection result of AGF. Then, a modified Gaussian filter with adaptive variance and window size is used to restore the detected noise pixels. The proposed filter has been extensively evaluated on two representative grayscale images and the Berkeley image dataset BSDS300 with 300 images. Experimental results showed that the proposed filter achieved better denoising effect over the state-of-the-art filters, especially on images with noise-free pixels of gray levels 0 and 255.

A method to reject noise signals in partial discharge signals of turbine generator (터빈 발전기의 부분방전 신호 중 노이즈 제거 방법)

  • Park, Y.H.;Park, P.G.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.240-242
    • /
    • 2005
  • It is well known that the PD (Partial Discharge) signals are generated if insulators have some defects such as voids in electrical facility and various PD detection methods are developed for preventing electrical troubles. So, an interest for the PD signals is higher and higher according to the high concern for the defects detection method of the aging electrical facility. When the equipment to detect PD signals installed at site and it works, a lot of noises flow in the equipment from surrounding situation and it will be mixed with original PD waveform. So we can not get the desired PD waveform. Therefore, there are many trial to reject or suppress the noise from the PD signals from long times ago. The greater of them used the hardware such as bridge circuits and frequency filters to suppress the noise. This paper proposed a novel noise rejection method in acquired data from PD detection equipment. The noise has the irregular phase and higher signal level than real PD, and noise decision is performed after inspection of pulse distribution in ${\Phi}$-q-n graph of acquired data from PD detection equipments. By experimental results on high voltage electric equipments, it is shown that proposed method has good performance. It is expected that this noise rejection technology is useful in numeric calculation and trend management of PD level.

  • PDF

Voice Activity Detection Algorithm using Wavelet Band Entropy Ensemble Analysis in Car Noisy Environments (자동차 잡음 환경에서 웨이브렛 밴드 엔트로피 앙상블 분석을 이용한 음성구간 검출 알고리즘)

  • Lee, G.H.;Lee, Y.J.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1005-1017
    • /
    • 2013
  • Voice activity detection is very important process that voice activity separated form noisy speech signal for speech enhance. Over the past few years, many studies have been made on voice activity detection, but it has poor performance in low signal to noise ratio environment or fickle noise such as car noise. In this paper, it proposed new voice activity detection algorithm using ensemble variance based on wavelet band entropy and soft thresholding method. We conduct a survey in a lot of signal to noise ratio environment of car noise to evaluate performance of the proposed algorithm and confirmed performance of the proposed algorithm.

Time-Frequency Domain Impulsive Noise Detection System in Speech Signal (음성 신호에서의 시간-주파수 축 충격 잡음 검출 시스템)

  • Choi, Min-Seok;Shin, Ho-Seon;Hwang, Young-Soo;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • This paper presents a new impulsive noise detection algorithm in speech signal. The proposed method employs the frequency domain characteristic of the impulsive noise to improve the detection accuracy while avoiding the false-alarm problem by the pitch of the speech signal. Furthermore, we proposed time-frequency domain impulsive noise detector that utilizes both the time and frequency domain parameters which minimizes the false-alarm problem by mutually complementing each other. As the result, the proposed time-frequency domain detector shows the best performance with 99.33 % of detection accuracy and 1.49 % of false-alarm rate.

An effective edge detection method for noise images based on linear model and standard deviation (선형모형과 표준편차에 기반한 잡음영상에 효과적인 에지 검출 방법)

  • Park, Youngho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.813-821
    • /
    • 2020
  • Recently, research using unstructured data such as images and videos has been actively conducted in various fields. Edge detection is one of the most useful image enhancement techniques to improve the quality of the image process. However, it is very difficult to perform edge detection in noise images because the edges and noise having high frequency components. This paper uses a linear model and standard deviation as an effective edge detection method for noise images. The edge is detected by the difference between the standard deviation of the pixels included in the pixel block and the standard deviation of the residual obtained by fitting the linear model. The results of edge detection are compared with the results of the Sobel edge detector. In the original image, the Sobel edge detection result and the proposed edge detection result are similar. Proposed method was confirmed that the edge with reduced noise was detected in the various levels of noise images.

Intrusion Detection using Attribute Subset Selector Bagging (ASUB) to Handle Imbalance and Noise

  • Priya, A.Sagaya;Kumar, S.Britto Ramesh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.97-102
    • /
    • 2022
  • Network intrusion detection is becoming an increasing necessity for both organizations and individuals alike. Detecting intrusions is one of the major components that aims to prevent information compromise. Automated systems have been put to use due to the voluminous nature of the domain. The major challenge for automated models is the noise and data imbalance components contained in the network transactions. This work proposes an ensemble model, Attribute Subset Selector Bagging (ASUB) that can be used to effectively handle noise and data imbalance. The proposed model performs attribute subset based bag creation, leading to reduction of the influence of the noise factor. The constructed bagging model is heterogeneous in nature, hence leading to effective imbalance handling. Experiments were conducted on the standard intrusion detection datasets KDD CUP 99, Koyoto 2006 and NSL KDD. Results show effective performances, showing the high performance of the model.

Detection of Signal Frequency Lines for Acoustic Target using Autoassociative Momory Neural Network (자동 연상 기억장치 신경망을 이용한 음향 표적의 신호 주파수선 탐지)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 1996
  • Signal frequency lines generated from the acoustic targets are of particular importance for target detection and classification in passive sonar systems. The underwater noise consists of a mixture of ambient noise and radiated noise of targets. Detction of exact signal frequency lines depends on signal detection threshold and variation of ambient noise. In this paper, a detection method of signal frequency lines for acoustic targets using autoassociative memory (ASM) neural network, which is not sensitive to variation of signal detection threshold and ambient noise, is proposed. It is confirmed by simulation and application of real acoustic targets that the proposed method shows good performance for detection of signal frequency lines.

  • PDF