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Abstract 

Adaptive Gaussian filter (AGF) is a recently developed switching filter to remove salt and 

pepper noise. AGF first directly identifies pixels of gray levels 0 and 255 as noise pixels, and 

then only restored noise pixels using a Gaussian filter with adaptive variance based on the 

estimated noise density. AGF usually achieves better denoising effect in comparison with 

other filters. However, AGF still fails to obtain good denoising effect on images with 

noise-free pixels of gray levels 0 and 255, due to its severe false alarm in its noise detection 

stage. To alleviate this issue, a modified version of AGF is proposed in this paper. 

Specifically, the proposed filter first performs noise detection via an image block based noise 

density estimation and sequential noise density guided rectification on the noise detection 

result of AGF. Then, a modified Gaussian filter with adaptive variance and window size is 

used to restore the detected noise pixels. The proposed filter has been extensively evaluated 

on two representative grayscale images and the Berkeley image dataset BSDS300 with 300 

images. Experimental results showed that the proposed filter achieved better denoising effect 

over the state-of-the-art filters, especially on images with noise-free pixels of gray levels 0 

and 255. 
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1. Introduction 

Salt and pepper noise is a common image impulse noise, which is usually generated by bit 

errors during image acquisition and transmission [1-4]. Salt and pepper noise is one of the 

main factors causing image contamination and quality deterioration. Each noise pixel has a 

gray level, either 0 or 255, in an 8-bit image. Noise pixels bring great difficulty for image 

analysis such as edge detection [5], because noise pixel has similar large gradient value with 

true edge pixel due to the large differences from its neighboring pixels. Removal of salt and 

pepper noise is still of great importance to image denoising. 

During the past several decades, many filters have been developed to remove salt and 

pepper noise. These filters can be divided into two categories, i.e., conventional filters [6-8] 

and switching filters [9-18]. Conventional filters perform image filtering on each pixel, that 

is, they restore each pixel with a newly estimated gray level. The undesirable filtering on 

noise-free pixels easily generates blurry image details. Median filter [1] is a representative of 

conventional filters. It restores each pixel with the median of gray levels in current filtering 

window. However, when noise density is high, the number of noise pixels may be greater 

than that of noise-free pixels in a filtering window. In this case, the median value chosen by 

the median filter is also a noise pixel. Increasing filtering window usually better suppresses 

severe noise. However, a large filtering window is prone to cause more blurriness. To 

alleviate this issue, many modified median filters [7-8] have been developed. For example, 

adaptive median filter (AM) [8] automatically determines filtering window size according to 

the content of local patch. 

Switching filters [9-18] divide image denoising task into two stages, i.e., noise detection 

and noise restoration. The noise detection stage detects salt and pepper noise pixels. The 

noise restoration stage restores the detected noise pixels with newly estimated gray levels. 

Existing switching filters mainly utilize gray level extremes, directionality or their 

combinations to detect noise pixels. For examples, modified decision based unsymmetric 

trimmed median filter (UTM) [12], effective restoration method (ERM) [13], adaptive 

Gaussian filter (AGF) [14] and decision-based coupled window median filter (DBCWMF) 

[15] directly identify pixels of gray levels 0 and 255 as noise pixels. Differing from UTM 

ERM, AGF and DBCWMF, switching median filter with boundary discriminative noise 

detection (BDND) [16] divides gray levels of a patch into three intervals, and identifies 

pixels of gray levels in the left or right intervals as noise pixels in two noise detection stages 

with different patch sizes. Switching-based adaptive weighted mean filter (SAWM) [17] and 

directional weighted median filter (DWM) [18] respectively define weighted directional gray 

level differences, and use the minimum difference on different directions to identify noise 
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pixels. In essence, the minimum directional gray level difference depicts directionality of 

central pixel in a local patch, i.e., whether the central pixel is located on an edge. Two 

modified versions (MDWM [19] and MDWF [20]) of DWM employ both gray level 

extremes and the directionality to identify noise pixels.  

For noise restoration, existing switching filters usually use the mean or median variant of 

filtering window with fixed or adaptive size to restore detected noise pixels. For examples, 

UTM [12] restores each noise pixel by the mean or median variant of its 3×3 filtering 

window. BDND [16] restores each noise pixel by the median of remaining neighbors 

excluding noise in its filtering window with adaptive size. DWM [18] restores each noise 

pixel by the weighted median of its filtering window. MDWM [19] restores each noise pixel 

by the weighted median of neighbors without gray levels 0 and 255 on the estimated edge 

direction of its filtering window. MDWF [20] adaptively restores each noise pixel by the 

weighted mean of its recursive or non-recursive filtering window. SAWM [17] restores each 

noise pixel by the weighted mean of adaptive filtering window. ERM [13] restores each 

noise pixel by the gray level mean of noise-free pixels in its filtering window, where the size 

of filtering window is adaptively determined according to the ratio of noise pixel number to 

the total pixel number in the whole image. AGF [14] restores each noise pixel with the 

weighted mean of 9×9 filtering window, where the weights are defined by a Gaussian filter 

with adaptive variance. For each noise pixel, DBCWMF [15] first recursively extends its 

filtering window until noise-free pixels emerge in the filtering window or the filtering 

window size is equal to 9×9. Then, if there are noise-free pixels in the filtering window, the 

median of those noise-free pixels is taken as filtering output, otherwise, the mean of 3×3 

filtering window is chosen as the filtering output. In fact, after detecting noise pixels in an 

image, the subsequent restoration process is similar with image inpainting technique [21-23], 

because both image denoising and image inpainting usually aim to restore the corrupted 

pixels by using the uncorrupted neighboring pixels.    

Among existing switching filters, AGF usually achieves the best performance in terms of 

image denoising effect and computational complexity. However, AGF has two main 

limitations: 1) AGF misclassifies noise-free pixels of gray levels 0 and 255 as noise pixels, 

thus generating severe false alarm on images with noise-free pixels of gray levels 0 and 255 

in noise detection; 2) In the process of noise restoration, AGF uses a Gaussian filter with 

adaptive variance and fixed filtering window size. The adaptive variance will be affected by 

severe false alarm in noise detection. In addition, the fixed filtering window is adverse to 

image restoration. To alleviate both limitations of AGF, we present a modified adaptive 

Gaussian filter. The proposed filter has three main contributions in comparison with AGF: 1) 

The proposed filter develops an image block-based noise density estimation method to more 

accurately estimate noise density of an image; 2) The proposed filter presents a noise 

detection rectification method to improve the accuracy of noise detection; 3) The proposed 

filter presents a scheme of adaptively determining the filtering window size to enhance 
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image restoration effect. Experimental results on two representative grayscale images and 

Berkeley image dataset BSDS300 with 300 images showed that the proposed filter 

outperformed the state-of-the-art filters, especially on images with noise-free pixels of gray 

levels 0 and 255. 

The rest of this paper is organized as follows. Section 2 briefly introduces existing 

adaptive Gaussian filter (AGF) closely related to the proposed filter, and analyzes its 

advantages and limitations. Section 3 describes theory and implementation of the proposed 

filter. Experimental results are reported in Section 4. And this paper concludes in Section 5. 

2. Existing adaptive Gaussian filter (AGF) 

The proposed filter is mainly inspired to remedy the deficiencies of existing adaptive 

Gaussian filter (AGF) [14] in noise detection and restoration. During exploring existing 

switching filters, we found that AGF usually has better image denoising performance than 

other filters. However, AGF still has its limitations. This section will review AGF, and 

analyze its advantages and limitations. 

2.1. Noise detection 

For a given pixel pi, j of gray level fi, j, AGF directly identifies noise pixels according to fi, j. 

If fi,j is equal to 0 or 255, AGF judges pi, j as a noise pixel, otherwise, AGF judges pi, j as a 

noise-free pixel. The simple noise detection scheme lets miss detection to be 0. However, it 

erroneously detects noise-free pixels of gray levels 0 and 255 as noise pixels, thus generating 

severe false alarm on images with noise-free pixels of gray levels 0 and 255. The detection 

error lets those noise-free pixels undergo undesirable filtering operation, which may cause 

image blurriness. In addition, inaccuracy of noise detection caused by false alarm will affect 

accuracy of noise density estimation and adaptive variance determination in the Gaussian 

filter for noise restoration. 

2.2. Noise restoration 

AGF restores each noise pixel with a weighted mean of filtering window with fixed size, 

where the weights are defined by a Gaussian filter with adaptive variance. The detailed 

process of noise restoration in AGF is as follows: 

(1) For a detected noise pixel pi, j, let Ω denote the ω×ω filtering window centered at pi, j, 

where ω is empirically set to 9. 

(2) Construct a new set U after excluding noise pixels of gray levels 0 and 255 in Ω, and 

take the weighted mean of pixels in U as the restored gray level, ri,j, of pi, j, i.e., 
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where fs, t and αs, t denote the gray level and the weight of ps, t. The weight αs, t is defined by a 

classical Gaussian function as 

2 2

, 2

( ) ( )
exp

2
s t

s i t j
α

σ
 − + −

= − 
 

,                           (2) 

where (i, j) and (s, t) respectively denote the coordinates of pi, j and its neighboring pixel ps, t 

in the whole image. In addition, the parameter σ is empirically defined as 

noise density + 0.2σ =  ,                           (3) 

where noise density is estimated to be the ratio between the number of detected noise pixels 

and the total number of pixels in the whole image. 

When restoring a noise pixel, AGF considers space information of neighboring pixels in 

its filtering window more adequately in comparison with other filters. Studies on natural 

image statistics [24-26] show that the correlation between two pixels in a local patch 

decreases with their distance. A pixel is usually more similar to its nearer neighbors than 

those neighbors far from it. Hence, when restoring a noise pixel, those pixels near it should 

contribute more than those far from it. Based on this consideration, AGF adopts a Gaussian 

function with adaptive variance to effectively model unequal weights of noise-free neighbors 

around being restored noise pixel. As is well known, Gaussian filter is a powerful estimation 

kernel [27], which is widely used in scale-space representation [28], spatial filtering [29] and 

Gaussian noise reduction [30]. 

However, the adaptive variation σ
2
 of the Gaussian function defined in Eq. (2) depends on 

noise density estimation. Unfortunately, accurate noise density estimation will be affected by 

false alarm on noise-free pixels of gray levels 0 and 255. The detection error on noise-free 

pixels of gray levels 0 and 255 not only affects calculation of each noise-free neighbor’s 

weight during image restoration, but also loses useful pixel information due to erroneous 

exclusion of those noise-free neighbors of gray levels 0 and 255. On the other hand, the 

filtering window with fixed size in AGF is not reasonable for variable noise density. 

Adaptive variance of the Gaussian function used in AGF can only remedy the deficiency of 

fixed filtering window size to some extent. However, the size of 9×9 used in AGF may be 

not large enough to guarantee that there is noise-free pixels in the filtering window when 

noise density is high. Once U is a null set in Eq. (1), the calculation of restored gray level 

will be invalid. Conversely, the usage of too large filtering window may cause the loss of 

localization. Therefore, adaptive filtering window size is a good choice for image restoration. 

3. The proposed filter 

To remedy the deficiencies of AGF [14] in noise detection and restoration, a modified 

adaptive Gaussian filter is proposed in this paper. The contributions of the proposed filter are 

as follows: 1) The proposed filter presents a noise density estimation method, and combines 
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it with image thresholding technique to rectify noise detection error of AGF on noise-free 

pixels of gray levels 0 and 255; 2) The proposed filter presents a scheme of adaptively 

determining the filtering window size to enhance image restoration effect. 

3.1. Noise detection 

The proposed filter first estimates noise density via an image block based scheme. Then, 

the estimated noise density guides sequential noise detection. The detailed process of noise 

density estimation is as follows: 

(1) Respectively divide rows and columns of an image into w parts, and accordingly 

divide an image into w×w blocks. During this process, if the last part has not the same rows 

or columns as other parts, we extend the image through mirror-reflecting by enough rows or 

columns. 

(2) Calculate the probability of pixels of gray levels 0 and 255 in each block, and construct 

a vector 2{ , 1,..., }ip p i w= =
r r

. 

(3) Sort all elements in p
r

 into ascending order and form a vector 

called 2{ , 1,..., }ip p i w′ ′= =
r r

. 

(4) Estimate noise density of the image according to parity of the image block number w
2
. 

Specifically, the image noise density is defined as the mean value of middle k elements in 

p′
r

, where k and w
2
 have the same parity for the symmetry of taking k elements. The noise 

density estimation is formulated as 
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The choice of w and k will be discussed in Section 4.1.  

After estimating the image noise density, sequential noise detection process is as follows. 

We use a binary matrix B to record noise detection result, where 1 and 0 denote noise pixel 

and noise-free pixel, respectively. 

(1) Initialize all elements of B to zeros, like AGF [14], detect pixels of gray levels 0 and 

255 as noise pixels, and set their corresponding elements in B to ones. 

(2) If the estimated noise density De defined in Eq. (4) is nearest to one of the first 6 noise 

densities among {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}, continue the 

following steps, otherwise, the noise detection process stops. 

(3) Acquire two image thresholding results 

,

0

1, if 0
( , )
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i jf
seg i j
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                          (5) 
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,

255

1, if 255
( , )

0, otherwise

i jf
seg i j

  =
= 


                        (6) 

where 1 and 0 denote object pixel and background pixel, respectively. 

(4) Search object pixels in seg0 and seg255, find out each connected component Ci 

composed of object pixels under 8-connected graph topology, and construct a set 

C={ , 1,... }i i m=C , where m is the number of connected components. 

(5) Remove those components composed of possible noise pixels, and construct a new set 

{ }
i i

n β′ = >C C ,                              (7) 

round( )
e

Dβ α= × ,                             (8) 

where ni is the number of pixels in Ci, and α is a parameter, the choice of which will be 

discussed in Section 4.1. 

(6) Rectify the noise detection result obtained in the first step, i.e., setting B as 

,
( , ) 0 if ( , ) 1and

i j
i j i j p '=    =   ∈B B C .                    (9) 

The above noise detection rectification is based on the following considerations: 1) Gray 

level of a salt and pepper noise pixel can only be 0 or 255; 2) When noise density is not too 

high, the pixel number of a connected component composed of true noise pixels adhered 

together should be smaller than that of an image block composed of noise-free pixels of gray 

levels 0 or 255. The above noise detection rectification is useful for reducing false alarm on 

images with noise-free pixels of gray levels 0 and 255. 

3.2. Noise restoration 

The proposed filter first adaptively determines filtering window size according to the 

content of local patch. Then, the noise restoration scheme of AGF [14] is used to restore 

detected noise pixels. The detailed process of noise restoration is as follows: 

(1) For a given noise pixel pi, j, let wp×wp denote the size of local window centered at pi, j, 

initialize wp=3 and iteratively set wp=wp+2 until Nuc≥2 or wp≥Wmax, where Nuc denotes the 

number of detected noise-free (uncorrupted) pixels in current window, and the choice of 

Wmax will be discussed in Section 4.1. 

(2) Acquire the wp×wp filtering window Ω centered at pi, j, construct a set U after excluding 

detected noise pixels in Ω. Then, we take the weighted mean of pixels in U as the restored 

gray level of pi, j according to Eq. (1) defined by AGF. Note that, if U is a null set, we reset 

U=Ω to guarantee the validity of Eq. (1). Differing from AGF, the parameter σ in Eq. (2) is 

redefined as 

+ 0.2
e

Dσ = ,                                 (10) 

where De is the noise density estimated by the proposed method in Eq. (4). 
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4. Experimental results 

To evaluate the performance of the proposed filter, we performed extensive experiments on 

two representative grayscale images and 300 natural images from the Berkeley dataset 

BSDS300
1
. Each noise filter designed for a noisy grayscale image can be easily applied to a 

noisy color image by applying it to RGB color components separately and merging 

denoising results of three components as final denoising result of the color image. Therefore, 

the proposed filter only focuses on noisy grayscale images, and each color image in 

BSDS300 was converted into grayscale image by using the MATLAB function “rgb2gray”, 

while keeping the image size unchanged. 

The proposed filter is first qualitatively compared with the state-of-the-art salt and pepper 

noise filters, i.e., AM [8], BDND [16], UTM [12], SAWM [17], MDWF [20], ERM [13], 

DBCWMF [15] and AGF [14] on two representative grayscale images. Then, image 

denoising results on the BSDS300 dataset are quantitatively evaluated by two common 

measures, i.e., peak signal-to-noise ratio (PSNR) [31] and MSSIM (mean structural 

similarity) [32]: 
2
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,
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In Eq. (11), N is the total number of image pixels, ri, j and xi, j denote the gray levels of pi, j in 

the restored image and the original noise-free image, respectively. In Eq. (12), X and Y are 

the original noise-free image and the restored image, xj and yj are the image contents at the 

j-th local window, M is the number of local windows, 
jxµ and 

jyµ are the means of xj and 

yj, 
jxσ and 

jyσ are their standard deviations, 
j jx yσ is the covariance of xj and yj, C1 and C2 

are free parameters. The value of MSSIM is between 0 and 1. Higher PSNR and MSSIM 

indicate better denoising effect. 

In our experiments, the maximum window size of AM was set to 39. The iteration number 

of MDWF was set to 10. We ran MDWF with different filtering windows of 3×3, 5×5, 7×7, 

9×9, 11×11, 13×13, 15×15 on each image, and chosen the result corresponding to the highest 

PSNR value as the final result. BDND, UTM, SAWM, ERM, DBCWMF and AGF follow 

their original parameter setting. All testing samples are 8-bit grayscale images. To make each 

image pixel visit its complete filtering window, we extended four boundaries of an input 

image through mirror-reflecting to ensure enough pixels. 

                                                        
1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ 
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4.1. Impact of the parameters 

The proposed filter has four parameters, i.e., w, k, α and Wmax. The first two parameters 

(i.e., w and k) are used in our noise density estimation. To evaluate the impact of both 

parameters on the accuracy of noise density estimation, we specifically recorded average 

noise density estimation errors obtained by applying the proposed method with different w 

and k on the BSDS300 dataset corrupted by manually added salt and pepper noise under 9 

noise densities varying from 10% to 90% with an incremental step of 10%, where w is 

selected from 3 to 12. Considering the symmetry of taking k elements in p′
r

, when w
2
 is odd, 

k is also odd selected from {1, 3, 5, 7, 9, w
2
}, otherwise, k is even from {2, 4, 6, 8, 10, w

2
}. 

In fact, taking k=w
2
 elements indicates calculating the mean of p′

r
. When w is odd, taking 

k=1 element indicates calculating the median of p′
r

. When w is even, taking k=2 elements 

indicates calculating the median of p′
r

. Experimental results under different combinations of 

w and k are listed in Table 1. The lowest estimation error (0.00130) was obtained with w=7 

and k=9. Hence, w and k are set to 7 and 9 in subsequent experiments, respectively. 

Table 1. Average noise density estimation errors under different combinations of w and k 

w (odd) 
k 

1 3 5 7 9 w
2 

3 0.00167 0.00171 0.00207 0.00256 0.00341 0.00341 

5 0.00145 0.00147 0.00148 0.00149 0.00154 0.00338 

7 0.00135 0.00133 0.00132 0.00131 0.00130 0.00340 

9 0.00135 0.00133 0.00132 0.00132 0.00131 0.00339 

11 0.00136 0.00136 0.00136 0.00135 0.00134 0.00335 

       

w (even) 2 4 6 8 10 w
2 

4 0.00140 0.00144 0.00151 0.00167 0.00189 0.00339 

6 0.00133 0.00133 0.00132 0.00133 0.00134 0.00339 

8 0.00135 0.00134 0.00133 0.00132 0.00131 0.00336 

10 0.00136 0.00135 0.00134 0.00134 0.00133 0.00334 

12 0.00138 0.00137 0.00136 0.00136 0.00135 0.00337 

 

Table 2. Average noise detection error (pixel number) under different α 

Noise 

density 
AGF 

α 
100 200 300 400 500 600 700 800 900 

10% 799 73 86 94 98 101 106 108 111 114 

20% 757 96 106 112 117 121 126 129 130 134 

30% 716 117 120 127 131 134 138 142 144 147 

40% 673 197 136 140 144 146 148 152 152 154 

50% 632 1357 185 162 162 164 164 166 169 169 

60% 589 11748 2250 581 269 212 201 198 199 200 

70% 547 47948 29127 18591 12260 8207 5582 3949 2763 1912 

80% 505 97154 90724 86626 83576 80920 78779 76853 75045 73450 
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90% 463 130320 129860 129700 129600 129540 129500 129480 129460 129450 

The average value of the errors corresponding to the first six noise densities 

 694 2265 480 203 153 146 147 149 151 153 

 

The third parameter α is used in our noise detection stage. It controls sensitivity of 

distinguishing image blocks composed of noise-free pixels of gray levels 0 and 255 from 

those blocks composed of noise pixels adhered together. The parameter affects the 

effectiveness of noise detection rectification on noise-free pixels of gray levels 0 and 255. To 

evaluate the impact of α on noise detection, we specifically recorded average number of 

erroneously detected pixels obtained by applying our method with different α on all the 

images from BSDS300 under 9 noise densities from 10% to 90% with an incremental step of 

10%, where α ranges from 100 to 900 with an incremental step of 100. Average noise 

detection errors (pixel numbers) are listed in Table 2. In addition, to demonstrate the 

effectiveness of the proposed noise detection rectification, the error of noise detection 

without rectification operation is also listed in Table 2. In fact, the noise detection without 

rectification is just the scheme of AGF. From Table 2, one can observe that: 1) when noise 

density is higher than 60%, the noise detection errors obtained by the proposed filter with all 

α are higher than the error by AGF. This shows that when noise density is higher than 60%, 

noise detection rectification should be canceled, because it generates bad effect on noise 

detection. 2) For average values of the errors corresponding to the first six noise densities, 

the lowest error (146) was obtained with α=500. Hence, α is set to 500, and noise detection 

rectification is only performed when noise density is nearest to one of the first 6 noise 

densities among {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%} in our experiments. 

The fourth parameter Wmax indicates the maximum permitted filtering window size when 

iteratively enlarging filtering window for finding noise-free neighboring pixels in the 

proposed noise restoration stage. To discuss the choice of Wmax in detail, we first enlarged the 

filtering window for each noise pixel in each image until there are more than one noise-free 

neighbor, and denoted the size of current filtering window as Smax×Smax. Then, we recorded 

Smax values of all noise pixels in each noisy image, and calculated the number of images 

whose noise pixels have corresponding Smax values. Experimental results on the BSDS300 

dataset corrupted by salt and pepper noise of varying noise density are listed in Table 3. 

From Table 3, one can observe that when noise density is 90%, there are 300, 22, 15 and 10 

noisy images have noise pixels corresponding to Smax=11, 21, 31 and 41, respectively.  

Table 3. The number of images whose pixels needing different filtering window sizes (Smax) 

Needed filtering window size 

(Smax) 

Noise density 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

11 0 0 0 2 3 6 29 87 300 

21 0 0 0 0 0 0 17 17 22 

31 0 0 0 0 0 0 14 14 15 

41 0 0 0 0 0 0 9 10 10 
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Table 4. Average PSNR of 29 images obtained by the proposed filter with different Wmax 

11 21 31 41 

18.204 18.936 18.936 18.936 

To further evaluate the impact of Wmax on noise restoration, we took the 29 noisy images 

corresponding to Smax=41 as testing samples, and set Wmax to 11, 21, 31 and 41, respectively. 

Corresponding experimental results are listed in Table 4. Table 4 shows that average PSNR 

values obtained by the proposed filter with Wmax from {21, 31, 41} is higher than that by our 

filter with Wmax=11. At the same time, the proposed filter with Wmax from {21, 31, 41} have 

the same PSNR values, which is attributed to the usage of the weight defined by Eq. (2) in 

calculating filtering output of noise pixel. Eq. (2) is a classical Gaussian function, which 

defines the weight of weighted mean filter defined by Eq. (1). In fact, Eq. (1) can be 

understood as convolution operation of a Gaussian filtering template H and a local image 

window U excluding noise pixels, where H can be calculated by Eqs. (1)~(3). Of course, we 

can also use MATLAB function “fspecial” to generate H, where H under high noise density 

has more non-zero elements than H under low noise density, because noise density is related 

with σ in Eq. (3) and the function “fspecial” sets those elements lower than “eps×max(H(:))” 

to zeros due to their very small contributions for filtering output. When we set the size of H 

to 31×31 and 41×41, non-zero elements of H31×31 and H41×41 generated by “fspecial” under the 

highest noise density 100% only occupy 21 rows and 21 columns at the central location. In 

other words, H21×21, H31×31 and H41×41 generated by “fspecial” have the same non-zero 

elements, and these non-zero elements are centered at three templates. In this case, the 

filtering outputs as the convolution results of respectively using H21×21, H31×31 and H41×41 with 

U are the same. In summary, too small Wmax will affect image denoising effect when noise 

density is high, which is demonstrated by comparing PSNR values corresponding to Wmax 

=11 and Wmax =21 in Table 4. In addition, the proposed filter obtains the same PSNR value 

for Wmax>21 and Wmax =21, as demonstrated in Table 4. Large Wmax will add computational 

time. Therefore, Wmax is set to 21 in our experiments, and the choice of Wmax is regardless of 

image size. 

4.2. Qualitative comparison 

To qualitatively compare image denoising effect of different filters, we chose two widely 

used 256×256 grayscale images as shown in Fig. 1 as testing samples, and both images are 

representatives with and without noise-free pixels of gray levels 0 and 255. The maximum 

and minimum gray levels of the Lena image are 245 and 23, and there are no noise-free 

pixels of gray levels 0 and 255. The maximum and minimum gray levels of the rice image 

are 254 and 0, and there are 3839 noise-free pixels of gray level 0. In our experiments, each 

image was corrupted by salt and pepper noise with varying noise density from 10% to 90% 

with an incremental step of 10%. To save space, Fig. 2 only shows the denoising results 

under three noise densities, i.e., 10%, 50% and 90%. For the Lena image with noise density 
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10%, there is no obvious visual difference among the denoising results of different filters. 

For other two noisy Lena images, AM, BDND and UTM obtain inferior denoising effect than 

other filters. The results of AM suffer severe blurriness. The results of BDND have a lot of 

white noise regions. The results of UTM have a number of white and black noise regions. 

The results of SAWM and MDWF suffer some blurriness, and the results of MDWF and 

ERM have some white and black noise regions. The results of AGF and DBCWMF under 

noise density 90% have several white noise regions and black noise regions, respectively. As 

compared with other filters, the proposed filter obtains better denoising effect, because our 

results do not have noise regions and preserve more image details. 

 

 

 

 

 

 

 

Fig. 1. Two representative grayscale images and their histograms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Visual inspection of denoising results on two representative grayscale images under three noise

 densities, i.e., 10%, 50% and 90%. Columns 1-8: original images, results of AM [8], results of BDN

D [16], results of UTM [12], results of SAWM [17], results of MDWF [20], results of ERM [13], resul

ts of DBCWMF [15], results of AGF [14], and results of the proposed filter. 
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For the rice image with noise density 10%, the result of SAWM has a number of black and 

white noise points. The results of BDND, UTM, ERM and AGF have some white noise 

regions. The rice boundaries obtained by AM are not smooth enough. MDWF, DBCWMF 

and the proposed filter obtain the best denoising effect. When noise density is 50%, the 

results of DBCWMF, AGF and the proposed filter have better visual effect than those of 

other filters. The results of BDND, UTM and SAWM have a number of white or black noise 

regions. The results of AM, MDWF and ERM have some white or black noise regions. When 

noise density is 90%, the results of BDND and UTM have severe noise. The results of AM, 

MDWF, DBCWMF and AGF have some noise regions. The result of SAWM does not have 

noise, but its rice boundaries are not smoother than AM, MDWF, DBCWMF, AGF and the 

proposed filter. The proposed filter achieves better denoising effect on the rice images under 

noise densities 50% and 90% in comparison with other filters, because our results do not 

have noise, and rice boundaries are more complete. 

4.3. Quantitative comparison 

To provide quantitative comparison of image denoising effect of different filters, we 

evaluated them on the BSDS300 dataset using two measures, i.e., PSNR and MSSIM. Each 

testing image was also randomly corrupted by salt and pepper noise with varying density 

from 10% to 90% with an incremental step of 10%. To more adequately compare denoising 

effects of different filters on images with and without noise-free pixels of gray levels 0 and 

255, we specifically calculated average PSNR and MSSIM values on two types of images 

under each noise density, where the numbers of images belonging to both types are 138 and 

162, respectively. Furthermore, we also recorded average PSNR and MSSIM values on the 

whole dataset.  

Fig. 3 shows the box-whisker plots of PSNR and MSSIM. Furthermore, Fig. 4 shows the 

bar charts of average PSNR and MSSIM values obtained by different filters on three groups 

of images, i.e., images without noise-free pixels of gray levels 0 and 255, images with 

noise-free pixels of gray levels 0 and 255, and the whole BSDS300 dataset. From Figs. 4 

(a)-(d), it can be observed that the proposed filter and AGF obtain higher PSNR and MSSIM 

values than other filters on two types of images. For images without noise-free pixels of gray 

levels 0 and 255, the proposed filter obtains slightly higher PSNR and MSSIM values than 

AGF. For images with noise-free pixels of gray levels 0 and 255, the proposed filter achieves 

significant improvement in terms of PSNR and MSSIM in comparison with other filters, 

showing large superiority on this type of images. Figs. 4 (e)-(f) show that the proposed filter 

obtains the highest average PSNR and MSSIM values on the whole BSDS300 dataset, thus 

demonstrating better denoising effect than its counterparts. 
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4.4 Computational time 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Box-whisker plots of average PSNR and MSSIM values obtained by applying AM [8], BDND 

[16], UTM [12], SAWM [17], MDWF [20], ERM [13], DBCWMF [15], AGF [14] and the proposed 

filter to three groups of images, i.e., (a)-(b): 162 images without noise-free pixels of gray levels 0 and 

255, (c)-(d) 138 images with noise-free pixels of gray levels 0 and 255, and (e)-(f) 300 images from 

the BSDS300 dataset under 9 noise densities. 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 4. Bar chart of the PSNR and MSSIM mean values obtained by applying AM [8], BDND [16], 

UTM [12], SAWM [17], MDWF [20], ERM [13], DBCWMF [15], AGF [14] and the proposed filter 

to three groups of images, i.e., (a)-(b): 162 images without noise-free pixels of gray levels 0 and 255, 

(c)-(d): 138 images with noise-free pixels of gray levels 0 and 255, and (e)-(f): 300 images from the 

BSDS300 dataset under 9 noise densities. 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 5. Average computational time (in seconds) on BSDS300 under 9 noise densities 
AM BDND UTM SAWM MDWF ERM DBCWMF AGF Proposed
9.97 13.08 4.02 30.06 81.10 3.87 4.58 1.44 26.90

The computational time of the proposed filter is related with several factors such as image 
size and noise density. For example, the average total computational time is around 5s for the 
denoising of each noisy image with noise density 10% from the BSDS300 dataset on our 
Linux server with 1 CPU and 2G memory. To compare the computational efficiency of 
various filters, we specifically recorded their average computational time on BSDS300 under 
9 noise densities. Experimental results are listed in Table 5. Table 5 shows that the proposed 
filter is faster than SAWM and MDWF, but is slower than other counterparts. Overall, the 
proposed filter achieves satisfactory image denoising results within reasonable 
computational time. 

5. Conclusions

In this paper, we have proposed a modified adaptive Gaussian filter for the removal of salt 
and pepper noise. As compared with existing adaptive Gaussian filter (AGF), the proposed 
filter presents an image block based scheme to accurately estimate noise density of an image, 
and combines noise density estimation result and image thresholding results obtained by 
gray levels 0 and 255 to rectify the noise detection error of AGF. In addition, when restoring 
detected noise pixels, the proposed filter adopts adaptive filtering window size instead of 
empirically fixed window size in AGF. Experimental results on two representative grayscale 
images and the BSDS300 dataset showed that the proposed filter dramatically improved 
denoising effect in comparison with the state-of-the-art filters, especially on images with 
noise-free pixels of gray levels 0 and 255. 
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