• 제목/요약/키워드: Noise Classification

검색결과 678건 처리시간 0.023초

A Study on the Welding Gap Detecting Using Pattern Classification by ART2 and Fuzzy Membership Filter

  • Kim, Tae-Yeong;Kim, Gwan-Hyung;Lee, Sang-Bae;Kim, Il
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.527-531
    • /
    • 1998
  • This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current. And ART2 which has the competitive learning network classifiers the signal patterns for the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns In each case of 1mm, 2mm, 3mm, and no welding gap are identified by the artificial neural network. These procedure is an off-line execution. In on-line execution, the identification model of neural network for the classified pattern is located on ahead of the welding plant. And when the welding current patterns pass through the neural network in the direction of feedforward. it is possible to recognize the existence or the size of a welding gap.

  • PDF

효율적인 직선 검출을 위한 에지 패턴 분류 방법 (Edge Pattern Classification Method for Efficient Line Detection)

  • 박상현;김종호;강의성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.918-920
    • /
    • 2011
  • 본 논문에서는 이진화 결과 임펄스 노이즈 형태가 나타나는 영상에서 직선 성분을 검출할 때 사용되는 에지 패턴 분리 방법을 제안한다. 임펄스 노이즈가 발생하면 직선형태의 에지 패턴이 왜곡되어 복잡한 형태의 에지 형태가 된다. 왜곡된 상태에서 직선 검출 알고리즘을 적용하면 노이즈로 왜곡된 직선을 검출하지 못하기 때문에 전체 영상의 에지 성분을 방향성을 이용하여 분리하여야 한다. 본 논문에서는 4 방향에 대해서 에지 성분을 분리하였고, 분리한 각 영상에 대해서 겹쳐진 직선 패턴을 분리하여 직선을 검출하였다. 실험 결과는 제안하는 방법이 간단하면서도 정확하게 직선을 검출함을 보여준다.

  • PDF

Enhancing the Reliability of Wi-Fi Network Using Evil Twin AP Detection Method Based on Machine Learning

  • Seo, Jeonghoon;Cho, Chaeho;Won, Yoojae
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.541-556
    • /
    • 2020
  • Wireless networks have become integral to society as they provide mobility and scalability advantages. However, their disadvantage is that they cannot control the media, which makes them vulnerable to various types of attacks. One example of such attacks is the evil twin access point (AP) attack, in which an authorized AP is impersonated by mimicking its service set identifier (SSID) and media access control (MAC) address. Evil twin APs are a major source of deception in wireless networks, facilitating message forgery and eavesdropping. Hence, it is necessary to detect them rapidly. To this end, numerous methods using clock skew have been proposed for evil twin AP detection. However, clock skew is difficult to calculate precisely because wireless networks are vulnerable to noise. This paper proposes an evil twin AP detection method that uses a multiple-feature-based machine learning classification algorithm. The features used in the proposed method are clock skew, channel, received signal strength, and duration. The results of experiments conducted indicate that the proposed method has an evil twin AP detection accuracy of 100% using the random forest algorithm.

비침습적 관절질환 진단을 위한 관절음의 시주파수 분석 (Time-frequency Analysis of Vibroarthrographic Signals for Non-invasive Diagnosis of Articular Pathology)

  • 김거식;송철규;서정환
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.729-734
    • /
    • 2008
  • Vibroarthrographic(VAG) signals, emitted by human knee joints, are non-stationary and multi-component in nature and time-frequency distributions(TFD) provide powerful means to analyze such signals. The objective of this paper is to classify VAG signals, generated during joint movement, into two groups(normal and patient group) using the characteristic parameters extracted by time-frequency transform, and to evaluate the classification accuracy. Noise within TFD was reduced by singular value decomposition and back-propagation neural network(BPNN) was used for classifying VAG signals. The characteristic parameters consist of the energy parameter, energy spread parameter, frequency parameter, frequency spread parameter by Wigner-Ville distribution and the amplitude of frequency distribution, the mean and the median frequency by fast Fourier transform. Totally 1408 segments(normal 1031, patient 377) were used for training and evaluating BPNN. As a result, the average value of the classification accuracy was 92.3(standard deviation ${\pm}0.9$)%. The proposed method was independent of clinical information, and showed good potential for non-invasive diagnosis and monitoring of joint disorders such as osteoarthritis and chondromalacia patella.

점증적 모델에서 최적의 네트워크 구조를 구하기 위한 학습 알고리즘 (An Learning Algorithm to find the Optimized Network Structure in an Incremental Model)

  • 이종찬;조상엽
    • 인터넷정보학회논문지
    • /
    • 제4권5호
    • /
    • pp.69-76
    • /
    • 2003
  • 본 논문에서는 패턴 분류를 위한 새로운 학습 알고리즘을 소개한다. 이 알고리즘은 학습 데이터 집합에 포함된 오류 때문에 네트워크 구조가 너무 복잡하게 되는 점증적 학습 알고리즘의 문제를 해결하기 위해 고안되었다. 이 문제를 위한 접근 방법으로 미리 정의된 판단기준을 가지고 학습 과정을 중단하는 전지 방법을 사용한다. 이 과정에서 적절한 처리과정에 의해 3층 전향구조를 가지는 반복적 모델이 점증적 모델로부터 유도된다 여기서 이 네트워크 구조가 위층과 아래층 사이에 완전연결이 아니라는 점을 주목한다. 전지 방법의 효율성을 확인하기 위해 이 네트워크는 EBP로 다시 학습한다. 이 결과로부터 제안된 알고리즘이 시스템 성능과 네트워크 구조를 이루는 노드의 수 면에서 효과적임을 발견할 수 있다.

  • PDF

Exploring Image Processing and Image Restoration Techniques

  • Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.172-179
    • /
    • 2015
  • Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • 인터넷정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

Localization and size estimation for breaks in nuclear power plants

  • Lin, Ting-Han;Chen, Ching;Wu, Shun-Chi;Wang, Te-Chuan;Ferng, Yuh-Ming
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.193-206
    • /
    • 2022
  • Several algorithms for nuclear power plant (NPP) break event detection, isolation, localization, and size estimation are proposed. A break event can be promptly detected and isolated after its occurrence by simultaneously monitoring changes in the sensing readings and by employing an interquartile range-based isolation scheme. By considering the multi-sensor data block of a break to be rank-one, it can be located as the position whose lead field vector is most orthogonal to the noise subspace of that data block using the Multiple Signal Classification (MUSIC) algorithm. Owing to the flexibility of deep neural networks in selecting the best regression model for the available data, we can estimate the break size using multiple-sensor recordings of the break regardless of the sensor types. The efficacy of the proposed algorithms was evaluated using the data generated by Maanshan NPP simulator. The experimental results demonstrated that the MUSIC method could distinguish two near breaks. However, if the two breaks were close and of small sizes, the MUSIC method might wrongly locate them. The break sizes estimated by the proposed deep learning model were close to their actual values, but relative errors of more than 8% were seen while estimating small breaks' sizes.

1-D CNN deep learning of impedance signals for damage monitoring in concrete anchorage

  • Quoc-Bao Ta;Quang-Quang Pham;Ngoc-Lan Pham;Jeong-Tae Kim
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.43-62
    • /
    • 2023
  • Damage monitoring is a prerequisite step to ensure the safety and performance of concrete structures. Smart aggregate (SA) technique has been proven for its advantage to detect early-stage internal cracks in concrete. In this study, a 1-D CNN-based method is developed for autonomously classifying the damage feature in a concrete anchorage zone using the raw impedance signatures of the embedded SA sensor. Firstly, an overview of the developed method is presented. The fundamental theory of the SA technique is outlined. Also, a 1-D CNN classification model using the impedance signals is constructed. Secondly, the experiment on the SA-embedded concrete anchorage zone is carried out, and the impedance signals of the SA sensor are recorded under different applied force levels. Finally, the feasibility of the developed 1-D CNN model is examined to classify concrete damage features via noise-contaminated signals. The results show that the developed method can accurately classify the damaged features in the concrete anchorage zone.