• Title/Summary/Keyword: Noise Classification

Search Result 669, Processing Time 0.028 seconds

A Study on the Automatic Detection and Extraction of Narrowband Multiple Frequency Lines (협대역 다중 주파수선의 자동 탐지 및 추출 기법 연구)

  • 이성은;황수복
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.78-83
    • /
    • 2000
  • Passive sonar system is designed to classify the underwater targets by analyzing and comparing the various acoustic characteristics such as signal strength, bandwidth, number of tonals and relationship of tonals from the extracted tonals and frequency lines. First of all the precise detection and extraction of signal frequency lines is of particular importance for enhancing the reliability of target classification. But, the narrowband frequency lines which are the line formed in spectrogram by a tonal of constant frequency in each frame can be detected weakly or discontinuously because of the variation of signal strength and transmission loss in the sea. Also, it is very difficult to detect and extract precisely the signal frequency lines by the complexity of impulsive ambient noise and signal components. In this paper, the automatic detection and extraction method that can detect and extract the signal components of frequency tines precisely are proposed. The proposed method can be applied under the bad conditions with weak signal strength and high ambient noise. It is confirmed by the simulation using real underwater target data.

  • PDF

Machine Learning-based MCS Prediction Models for Link Adaptation in Underwater Networks (수중 네트워크의 링크 적응을 위한 기계 학습 기반 MCS 예측 모델 적용 방안)

  • Byun, JungHun;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • This paper proposes a link adaptation method for Underwater Internet of Things (IoT), which reduces power consumption of sensor nodes and improves the throughput of network in underwater IoT network. Adaptive Modulation and Coding (AMC) technique is one of link adaptation methods. AMC uses the strong correlation between Signal Noise Rate (SNR) and Bit Error Rate (BER), but it is difficult to apply in underwater IoT as it is. Therefore, we propose the machine learning based AMC technique for underwater environments. The proposed Modulation Coding and Scheme (MCS) prediction model predicts transmission method to achieve target BER value in underwater channel environment. It is realistically difficult to apply the predicted transmission method in real underwater communication in reality. Thus, this paper uses the high accuracy BER prediction model to measure the performance of MCS prediction model. Consequently, the proposed AMC technique confirmed the applicability of machine learning by increase the probability of communication success.

Study to Propose the Suitable Reproducing Sound Level of SAFRS (능동형 음장조성시스템 연출음의 적정 소리레벨 제시를 위한 연구)

  • Jeon, Ji-Hyeon;Shin, Yong-Gyu;Kook, Chan;Jang, Gil-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.547-552
    • /
    • 2007
  • SAFRS(spontaneous acoustic field reproduction system) is a system to sense changes of surroundings and produce sounds which can go well with environment elements sensed by the system in to the space. The sounds were judged by individual evaluation and, the classification of the preferred sounds according to the mood of the space was suggested in the former study. Effectiveness of SAFRS with field application was validated by prior studies which dealt with researching acoustic environment, evaluating images of sounds, and rating environment with existence and nonexistence of sound resources such as fountains and the system after applied in D university. In this study, for more effective field application of SAFRS, research for the acoustic environment around sound resources and subjective evaluation of the preference of the sounds from the resources were made and it was considered that the results of the experiments should be primary information to propose proper sound level to be offered by the system. The results of the study are as follows; 1) It was considered that the ambience of the center road was dependent upon produced sounds by the system and water sounds of the fountain and that of walk way was mostly dependent upon produced sounds. 2) The results of the subjective evaluation showed that the distance from sound resources was suggestive; the more distant from produced sounds the less full and clear the sounds, the less distant from the sounds of water the more delight and idyllic ambience, and the less distant from the forest the more idyllic ambient and diversity. 3) The results upwards were telling that an average value of six elements for the evaluation was even at the place set back 10.2m from center road and walk way. And harmony of all sounds of the place should be considered to propose suitable sound level of SAFRS.

Remote Fault Detection in Conveyor System Using Drone Based on Audio FFT Analysis (드론을 활용하고 음성 FFT분석에 기반을 둔 컨베이어 시스템의 원격 고장 검출)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.101-107
    • /
    • 2019
  • This paper proposes a method for detecting faults in conveyor systems used for transportation of raw materials needed in the thermal power plant and cement industries. A small drone was designed in consideration of the difficulty in accessing the industrial site and the need to use it in wide industrial site. In order to apply the system to the embedded microprocessor, hardware and algorithms considering limited memory and execution time have been proposed. At this time, the failure determination method measures the peak frequency through the measurement, detects the continuity of the high frequency, and performs the failure diagnosis with the high frequency components of noise. The proposed system consists of experimental environment based on the data obtained from the actual thermal power plant, and it is confirmed that the proposed system is useful by conducting virtual environment experiments with the drone designed system. In the future, further research is needed to improve the drone's flight stability and to improve discrimination performance by using more intelligent methods of fault frequency.

Construction of Onion Sentiment Dictionary using Cluster Analysis (군집분석을 이용한 양파 감성사전 구축)

  • Oh, Seungwon;Kim, Min Soo
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2917-2932
    • /
    • 2018
  • Many researches are accomplished as a result of the efforts of developing the production predicting model to solve the supply imbalance of onions which are vegetables very closely related to Korean food. But considering the possibility of storing onions, it is very difficult to solve the supply imbalance of onions only with predicting the production. So, this paper's purpose is trying to build a sentiment dictionary to predict the price of onions by using the internet articles which include the informations about the production of onions and various factors of the price, and these articles are very easy to access on our daily lives. Articles about onions are from 2012 to 2016, using TF-IDF for comparing with four kinds of TF-IDFs through the documents classification of wholesale prices of onions. As a result of classifying the positive/negative words for price by k-means clustering, DBSCAN (density based spatial cluster application with noise) clustering, GMM (Gaussian mixture model) clustering which are partitional clustering, GMM clustering is composed with three meaningful dictionaries. To compare the reasonability of these built dictionary, applying classified articles about the rise and drop of the price on logistic regression, and it shows 85.7% accuracy.

Correlation Matrix Generation Technique with High Robustness for Subspace-based DoA Estimation (부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법)

  • Byeon, BuKeun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • In this paper, we propose an algorithm to improve DoA(direction of arrival) estimation performance of the subspace-based method by generating high robustness correlation matrix of the signals incident on the uniformly linear array antenna. The existing subspace-based DoA estimation method estimates the DoA by obtaining a correlation matrix and dividing it into a signal subspace and a noise subspace. However, the component of the correlation matrix obtained from the low SNR and small number of snapshots inaccurately estimates the signal subspace due to the noise component of the antenna, thereby degrading the DoA estimation performance. Therefore a robust correlation matrix is generated by arranging virtual signal vectors obtained from the existing correlation matrix in a sliding manner. As a result of simulation using MUSIC and ESPRIT, which are representative subspace-based methods,, the computational complexity increased by less than 2.5% compared to the existing correlation matrix, but both MUSIC and ESPRIT based on RMSE 1° showed superior DoA estimation performance with an SNR of 3dB or more.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Binary Tree Architecture Design for Support Vector Machine Using Dynamic Time Warping (DTW를 이용한 SVM 기반 이진트리 구조 설계)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Seung Woo;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.201-208
    • /
    • 2014
  • In this paper, we propose the classifier structure design algorithm using DTW. Proposed algorithm uses DTW result to design the binary tree architecture based on the SVM which classify the multi-class data. Design the binary tree architecture for Support Vector Machine(SVM-BTA) using the threshold criterion calculated by the sum columns in square matrix which components are the reference data from each class. For comparison the performance of the proposed algorithm, compare the results of classifiers which binary tree structure are designed based on database and k-means algorithm. The data used for classification is 333 signals from 18 classes of underwater transient noise. The proposed classifier has been improved classification performance compared with classifier designed by database system, and probability of detection for non-biological transient signal has improved compare with classifiers using k-means algorithm. The proposed SVM-BTA classified 68.77% of biological sound(BO), 92.86% chain(CHAN) the mechanical sound, and 100% of the 6 kinds of the other classes.

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.

Analysis of Core Patent and Technology of Unmanned Ground Technology Using an Analytical Method of the Patent Information (특허정보 분석 방법을 이용한 지상무인화 기술 분야 핵심 특허 및 기술 분석)

  • Park, Jae Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.5
    • /
    • pp.189-194
    • /
    • 2018
  • Unmanned technology is a representative technology that integrates various technologies like electric, electronic, mechanical, artificial intelligence, ICT technology, ect. In special emphasize, ground technology has been developing exponentially in the military field and expanding its utilization area. The patent information analysis method presented in this study, proposes a new patent analysis methodology for patent information analysis and patent information on unmanned ground technology. The patent information analysis processor has 6 levels to extract core patents and technologies. The process consists of: selection of technology to be analyzed, classification of detailed technology / key keyword selection, patent information collection / noise reduction, selection of patent information analysis method, patent information analysis, finally, core patents and key technologies that are extracted. Patent information on unmanned ground technology is also analyzed in this study. First, the technical classification of ground unmanned technology is carried out in detail. The core technology and core patents of ground unmanned technology were extracted through CPP and IPC code connectivity analysis. The results of patent information analysis using proposed patent information analysis method that can be applied to various fields of technology and analysis. These can be used as a material to forecast the direction of future research and development on the technology to be analyzed.