• Title/Summary/Keyword: Noise Branch

Search Result 126, Processing Time 0.02 seconds

An Enhancement of Removing Noise Branches by Detecting Noise Blobs (잡영블랍 검출에 의한 잡영가지 제거 방법의 개선)

  • 김성옥;임은경;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.419-428
    • /
    • 2003
  • Several methods have been studied to prune the parasitic branches that cause unfortunately from thinning a shape to get its skeleton. We found that the symmetric path finding method was most efficient because it followed the boundary pixels of the shape just once. In this paper, its extended method is proposed to apply to removing the noise branches that protrude out of the boundary of a segmented or extracted shape in a given image. The proposed method can remove a noise branch with one-pixel width and also remove the noise branch that includes a round shape called a noise blob. The method uses a 4-8-directional boundary-following technique to determine symmetric paths and finds noise branches with noise blobs by detecting quasi-symmetric paths. Its time complexity is a linear function of the number of boundary pixels. Interactively selectable parameters are used to define various types of noise branches flexibly, which are the branch - size parameter and the blob-size parameter. Experimental results for a practical shape and various artificial shapes showed that the proposed method was very useful for simplifying the shapes.

  • PDF

A maximum likelihood sequence detector in impulsive noise environment (충격성 잡음 환경에서의 최우 검출기)

  • 박철희;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1522-1532
    • /
    • 1996
  • In this paper, we compare the performance of channel estimators with the L$_{1}$-norm and L$_{2}$-norm criteria in impulaive noise environment, and show than the L$_{1}$-norm criterion is appropriate for that situation. Also, it is shown that the performance of the conventional maximum likelihood sequence detector(MLSD) can be improved by applying the same principle to mobile channels. That is, the performance of the conventional MLSD, which is known to be optimal under the Gaussian noise assumption, degrades in the impulsive noise of radio mobile communication channels. So, we proposed the MLSD which can reduce the effect of impulsive noise effectively by applying the results of channel estimators. Finally, it is confirmed by computer simulation that the performance of MLSD is significantly affected depending on the types of branch metrics, and that, in the impulsive noise environments, the proposed one with new branch metrics performs better thatn the conventional branch metric, l y(k)-s(k) l$^{[-992]}$ .

  • PDF

Signal Detection for Pattern Dependent Noise Channel (신호패턴 종속잡음 채널을 위한 신호검출)

  • Jeon, Tae-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.583-586
    • /
    • 2004
  • Transition jitter noise is one of major sources of detection errors in high density recording channels. Implementation complexity of the optimal detector for such channels is high due to the data dependency and correlated nature of the jitter noise. In this paper, two types of hardware efficient sub-optimal detectors are derived by modifying branch metric of Viterbi algorithm and applied to partial response (PR) channels combined with run length limited modulation coding. The additional complexity over the conventional Viterbi algorithm to incorporate the modified branch metric is either a multiplication or an addition for each branch metric in the Viterbi trellis.

The Characteristics of HVAC Noise in Office Buildings (사무소 건물의 공조설비소음 특성)

  • Do, Young-Ju;Kim, Dong-Gyu;Kim, Heung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • This study aims to provide the basic data useful in assessing indoor-noise and designing sound devices in office buildings of HVAC system. The measurements of HVAC noise were carried out in office room and mechanical room. The performance of absorptive chamber and side branch was also estimated in the office buildings which have HVAC noise problems. The results of experiments show that the NR value of indoor HVAC noise is rather higher than that of ISO recommendations at the frequencies below 500Hz. In addition, the results indicated that the absorptive chamber attenuates noise over broad band frequencies and side branch reduces noise at the special resonant frequency.

  • PDF

A Study on the Channel Capacity of Fading Channel (페이딩 통신로의 통신 용량에 관한 연구)

  • 고봉진;황인수;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1136-1145
    • /
    • 1993
  • The channel capacities of various lading channels are calculated and compared with that of Gaussian noise channel to find out the decrements of channel capacity according to each fading environment. As a result, it is confirmed that the channel capacities in Rician and m-distribution fading channels approach to that of Gaussian noise channel as direct-to-indirect power ratio in Rician fading channel and fading index m in m-distribution fading channel increases respectively. And the difference between two channel capacities of Gaussian noise channel and each fading channel which is dependent on carrier-to-noise power ratio (CNR) is found. Also the improvement of channel capacity of Rayleigh fading channel by introducing two-branch diversities is obtained. For diversity reception, predetection maximal-ratio and postdetection selective combining techniques are adopted. The results show that the improvement of channel capacity by predetection maximal-ratio combining diversity is superior to the postdetection selective combining diversitiy regardless of correlation coefficient between two diversity branches in Raylelgh fading channel. The best improvement is achieved when two branches are noncorrelative in both two diversify techniques and as correlation coefficient of two diversity branches is smaller, the improvement of channel capacity is greater.

  • PDF

Further Analysis on Selective Diversity Reception for Detection of M-ary Signals Over Nakagami Fading Channels

  • Na, Seung-Gwan;Kim, Chang-Hwan;Chin, Yong-Ohk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1045-1052
    • /
    • 2005
  • The symbol error probability of M-ary PSK (MPSK) and QAM (MQAM) systems using the branch with the largest signal-to-noise ratio (SNR) at the output of L-branch selection combining (SC) in frequency-nonselective slow Nakagami fading channels with an additive white Gaussian noise (AWGN) is derived theoretically For integer values of the Nakagami fading parameter m, the general formula for evaluating symbol error rate (SER) of MPSK signals in the independent branch diversity system comprises numerical analyses with the integral-form expressions. An exact closed-form SER performance of MQAM signals under the effect of SC diversity via numerical integration is presented. These performance evaluations allow designers to determine M-ary modulation methods for Nakagami fading channels.

Low Complexity Noise Predictive Maximum Likelihood Detection Method for High Density Perpendicular Magnetic Recording: (고밀도 수직자기기록을 위한 저복잡도 잡음 예측 최대 유사도 검출 방법)

  • 김성환;이주현;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.562-567
    • /
    • 2002
  • Noise predictive maximum likelihood(NPML) detector embeds noise predictions/ whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This paper shows that NP(1221)ML system through noise predictive PR-equalized signal has less complexity and better performance than high order PR(12321)ML system in high density perpendicular magnetic recording. The simulation results are evaluated using (1) random sequence and (2) run length limited (1,7) sequence, and they are applied to linear channel and nonlinear channel with normalized linear density $1.0{\leq}K_p{\leq}3.0$.