• Title/Summary/Keyword: Node-based scheduling method

Search Result 37, Processing Time 0.028 seconds

Implementation of FlexRay Network System using Node-based Scheduling Method (노드 기반 스케줄링 방법을 이용한 FlexRay 네트워크 시스템의 구현)

  • Kim, Man-Ho;Ha, Kyoung-Nam;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2010
  • As vehicles become intelligent for convenience and safety of drivers, in-vehicle networking (IVN) systems are essential components of intelligent vehicles. Recently, the chassis networking system which require increased network capacity and real-time capability is being developed to expand the application area of IVN systems. Also, FlexRay has been developed for the chassis networking system. However, FlexRay needs a complex scheduling method of static segment, which is a barrier for implementing the chassis networking system. Especially, if we want to migrate from CAN network to FlexRay network using CAN message database that was well constructed for the chassis networking system by automotive vendors, a novel scheduling method is necessary to be able to reduce design complexity. This paper presents a node-based scheduling method for FlexRay network system. And, in order to demonstrate the method's feasibility, its performance is evaluated through an experimental testbed.

Stability and a scheduling method for network-based control systems (네트워크를 이용한 제어 시스템의 안정도 및 스케줄링에 관한 연구)

  • 김용호;권욱현;박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1432-1435
    • /
    • 1996
  • This paper obtains maximum allowable delay bounds for stability of network-based control systems and presents a network scheduling method which makes the network-induced delay be less than the maximum allowable delay bound. The maximum allowable delay bounds are obtained using the Lyapunov theorem. Using the network scheduling method, the bandwidth of a network can be allocated to each node and the sampling period of each sensor and controller can be determined. The presented method can handle three kinds of data (periodic, real-time asynchronous, and non real-time asynchronous data) and guarantee real-time transmissions of real-time synchronous data and periodic data, and possible transmissions of non real-time asynchronous data. The proposed method is shown to be useful by examples in two types of network protocols such as the token control and the central control.

  • PDF

Optimal Period and Priority Assignment Using Task & Message-Based Scheduling in Distributed Control Systems (분산 제어 시스템에서의 태스크와 메시지 기반 스케줄링을 이용한 최적 주기와 우선순위 할당)

  • 김형육;이철민;박홍성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.506-513
    • /
    • 2002
  • Distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks. An assignment method of the optimal period of each loop and a heuristic assignment rule of each message's priority are proposed and the integrated scheduling method is developed based on them.

A Flexible Branch and Bound Method for the Job Shop Scheduling Problem

  • Morikawa, Katsumi;Takahashi, Katsuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.239-246
    • /
    • 2009
  • This paper deals with the makespan minimization problem of job shops. The problem is known as one of hard problems to optimize, and therefore, many heuristic methods have been proposed by many researchers. The aim of this study is also to propose a heuristic scheduling method for the problem. However, the difference between the proposed method and many other heuristics is that the proposed method is based on depth-first branch and bound, and thus it is possible to find an optimal solution at least in principle. To accelerate the search, when a node is judged hopeless in the search tree, the proposed flexible branch and bound method can indicate a higher backtracking node. The unexplored nodes are stored and may be explored later to realize the strict optimization. Two methods are proposed to generate the backtracking point based on the critical path of the current best feasible schedule, and the minimum lower bound for the makespan in the unexplored sub-problems. Schedules are generated based on Giffler and Thompson's active schedule generation algorithm. Acceleration of the search by the flexible branch and bound is confirmed by numerical experiment.

A Wireless Sink Congestion Control by Tournament Scheduling (토너먼트 스케줄링을 이용한 무선싱크 혼잡제어)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.641-648
    • /
    • 2012
  • The up-streams of the continuous streaming of data packets with lower importance level in the wireless sink node can cause congestion and delay, they affect on energy efficiency, memory size, buffer size, and throughput. This paper proposes a new wireless sink congestion control mechanism based on tournament scheduling. The proposed method consists of two module parts: stream decision module part and service differentiation module part. The final winner in the tournament controls congestion effectively, minimizes packet loss due to congestion, decreases energy consumption, and improves QoS. The simulation result shows that the proposed method is more effective and has better performance compared with those of congestion descriptor-based control method, reliability-based control method, and best-effort transmission control method.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

Data Weight based Scheduling Scheme for Fair data collection in Sensor Networks with Mobile Sink (모바일 싱크 기반 무선 센서 네트워크에서 균등한 데이타 수집을 위한 데이타 가중치 기반 스케줄링 기법)

  • Jo, Young-Tae;Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.21-33
    • /
    • 2008
  • The wireless sensor nodes near to the fixed sink node suffer from the quickly exhausted battery energy. To address this problem, the mobile sink node has been applied to distribute the energy consumption into all wireless sensor nodes. However, since the mobile sink node moves, the data collection scheduling scheme is necessary for the sink node to receive the data from all sensor nodes as fair as possible. The application fields of wireless sensor network need the real-time processing. If the uneven data collection occurs in the wireless sensor network, the real-time processing for the urgent events can not be satisfied. In this paper, a new method is proposed to support the lair data collection between all sensor nodes. The proposed method performs the scheduling algorithm based on the resident time of the sink node staying in a radius of communication range and the amount of data transferred already. In this paper, the proposed method and existing data collection scheduling schemes are evaluated in wireless sensor network with the mobile sink node. The result shows that the proposed method provides the best fairness among all data collection schemes.

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints

  • Kim, Hyoung-Yuk;Kim, Sang-Yong;Oh, Hoon;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.747-752
    • /
    • 2004
  • Researches about scheduling of the distributed real-time systems have been proposed. However, they have some weak points, not scheduling both sporadic and periodic tasks and messages or being unable to guaranteeing the end-to-end constraints due to omitting precedence relations between sporadic tasks. So this paper proposes a new scheduling method for distributed real-time systems consisting of sporadic and periodic tasks with precedence relations and sporadic and periodic messages, guaranteeing end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic (RM) scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

  • PDF

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints (양극단 제약을 갖는 비주기, 주기 태스크와 메시지 스케줄링)

  • Oh Hoon;Park Hong Seong;Kim Hyoung Yuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.175-185
    • /
    • 2005
  • The scheduling methods of the distributed real-time systems have been proposed. However, they have some weak points. They did not schedule both sporadic and periodic tasks and messages at the same time or did not consider the end-to-end constraints such as precedence relations between sporadic tasks. This means that system scheduling must guarantee the constraints of practical systems and be applicable to them. This paper proposes a new scheduling method that can be applied to more practical model of distributed real-time systems. System model consists of sporadic and periodic tasks with precedence relations and sporadic and periodic messages and has end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

A Novel SDN-based System for Provisioning of Smart Hybrid Media Services

  • Jeon, Myunghoon;Lee, Byoung-dai
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.33-41
    • /
    • 2018
  • In recent years, technology is rapidly changing to support new service consumption and distribution models in multimedia service systems and hybrid delivery of media services is a key factor for enabling next generation multimedia services. This phenomenon can lead to rapidly increasing network traffic and ultimately has a direct and aggravating effect on the user's quality of service (QOS). To address the issue, we propose a novel system architecture to provide smart hybrid media services efficiently. The architecture is designed to apply the software-defined networking (SDN) method, detect changes in traffic, and combine the data, including user data, service features, and computation node status, to provide a service schedule that is suitable for the current state. To this end, the proposed architecture is based on 2-level scheduling, where Level-1 scheduling is responsible for the best network path and a computation node for processing the user request, whereas Level-2 scheduling deals with individual service requests that arrived at the computation node. This paper describes the overall concept of the architecture, as well as the functions of each component. In addition, this paper describes potential scenarios that demonstrate how this architecture could provide services more efficiently than current media-service architectures.