• Title/Summary/Keyword: Node distribution

Search Result 596, Processing Time 0.032 seconds

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.

Phase Noise Spectrum of LNB for PSK Multi-mode satellite transmission signal (PSK 고차모드 위성전송을 위한 저잡음 증폭 주파수 변환기의 위상 잡음 해석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1180-1186
    • /
    • 2008
  • The LNB phase noise of user terminal for high data rate satellite transmission was analyzed in this paper. The phase noise severely affects the service performance in low data rate transmission as well as multi-mode signal for high data rate. As the satellite link frequency is increased, the effects of phase noise for multi-mode signal is increased. The phase noise of LNB, which is operated in high frequency band, is about equal to the transmission system phase noise and have an major effects on service performance degradation. The available transmission mode was analyzed in presence of phase noise of LNB and analysis method for LNB phase noise spectrum distribution was proposed in multi-mode signal.

A refined finite element for first-order plate and shell analysis

  • Han, Sung-Cheon;Kanok-Nukulchai, Worsak;Lee, Won-Hong
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.191-213
    • /
    • 2011
  • This paper presents an improved 8-node shell element for the analysis of plates and shells. The finite element, based on a refined first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the different patterns of sampling points for interpolating different components of strains. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Further, a refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. Numerical examples demonstrate that the present element perform better in comparison with other shell elements.

Reducing Cybersecurity Risks in Cloud Computing Using A Distributed Key Mechanism

  • Altowaijri, Saleh M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.

An Efficient MIPv4 Registration Protocol With Minimal Overheads Of AAA (AAA 오버헤드를 최소화한 효율적인 MIPv4 등록 프로토롤)

  • Kang Hyun-Sun;Park Chang-Seop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.3
    • /
    • pp.43-52
    • /
    • 2005
  • MIPv4 supports node mobility, manages MN's binding list and provides seamless communication through registration protocol. Since the registration protocol usually operating in the wireless environment involves authenticating MNs, it is a general approach to introduce the AAA infrastructure as key distribution center for the purpose of authentication. In this paper, we propose an efficient registration protocol with lightweight AAA based on domain key. Proposed protocol also withstands various replay attacks, and provides non-repudiation service for the accounts of the usage of the network service.

Detection and Trust Evaluation of the SGN Malicious node

  • Al Yahmadi, Faisal;Ahmed, Muhammad R
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.89-100
    • /
    • 2021
  • Smart Grid Network (SGN) is a next generation electrical power network which digitizes the power distribution grid and achieves smart, efficient, safe and secure operations of the electricity. The backbone of the SGN is information communication technology that enables the SGN to get full control of network station monitoring and analysis. In any network where communication is involved security is essential. It has been observed from several recent incidents that an adversary causes an interruption to the operation of the networks which lead to the electricity theft. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we have introduced a machine learning based SVM method that detects malicious nodes in a smart grid network. The algorithm collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) classifies nodes into Normal or malicious nodes giving the statues of 1 for normal nodes and status of -1 for malicious -abnormal-nodes. Once the malicious nodes have been detected, we have done a trust evaluation based on the nodes history and recorded data. In the simulation, we have observed that our detection rate is almost 98% where the false alarm rate is only 2%. Moreover, a Trust value of 50 was achieved. As a future work, countermeasures based on the trust value will be developed to solve the problem remotely.

Strategic Approaches to Sustainable Regional Development: An Exploratory Study of the China (Anhui) Pilot Free Trade Zone

  • LEE, Jung Wan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.41-52
    • /
    • 2022
  • This paper analyzes the advantages and opportunities of regional development prospects of the China (Anhui) Pilot Free Trade Zone. In addition, it provides suggestions for the future development of the Anhui Pilot Free Trade Zone. The establishment of the Anhui Pilot Free Trade Zone is a major platform for Anhui Province, China, to serve the nation's opening-up strategy to the world and an opportunity for the Anhui region to enhance the level of an open economy. The development plan points out that the Anhui Pilot Free Trade Zone 1) takes institutional innovation as the core, 2) complies with the requirements of the innovation-driven development and promotion of the Yangtze River Delta regional integration development strategy, and 3) plays a vital node role in promoting the construction of the Belt and Road Initiative, and 4) accelerates the construction of scientific and technological innovation sources, advanced manufacturing and strategic emerging industries. The findings of this study highlight three critical achievements as follows: 1) optimization and improvement of the business environment have progressed, 2) the conversion rate of scientific and technological innovation achievements has increased, and 3) advanced high-tech manufacturing and strategic emerging industries are clustered and developed.

Traffic Forecast Assisted Adaptive VNF Dynamic Scaling

  • Qiu, Hang;Tang, Hongbo;Zhao, Yu;You, Wei;Ji, Xinsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3584-3602
    • /
    • 2022
  • NFV realizes flexible and rapid software deployment and management of network functions in the cloud network, and provides network services in the form of chained virtual network functions (VNFs). However, using VNFs to provide quality guaranteed services is still a challenge because of the inherent difficulty in intelligently scaling VNFs to handle traffic fluctuations. Most existing works scale VNFs with fixed-capacity instances, that is they take instances of the same size and determine a suitable deployment location without considering the cloud network resource distribution. This paper proposes a traffic forecasted assisted proactive VNF scaling approach, and it adopts the instance capacity adaptive to the node resource. We first model the VNF scaling as integer quadratic programming and then propose a proactive adaptive VNF scaling (PAVS) approach. The approach employs an efficient traffic forecasting method based on LSTM to predict the upcoming traffic demands. With the obtained traffic demands, we design a resource-aware new VNF instance deployment algorithm to scale out under-provisioning VNFs and a redundant VNF instance management mechanism to scale in over-provisioning VNFs. Trace-driven simulation demonstrates that our proposed approach can respond to traffic fluctuation in advance and reduce the total cost significantly.

Optimal Sensor Location in Water Distribution Network using XGBoost Model (XGBoost 기반 상수도관망 센서 위치 최적화)

  • Hyewoon Jang;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.217-217
    • /
    • 2023
  • 상수도관망은 사용자에게 고품질의 물을 안정적으로 공급하는 것을 목적으로 하며, 이를 평가하기 위한 지표 중 하나로 압력을 활용한다. 최근 스마트 센서의 설치가 확장됨에 따라 기계학습기법을 이용한 실시간 데이터 기반의 분석이 활발하다. 따라서 어디에서 데이터를 수집하느냐에 대한 센서 위치 결정이 중요하다. 본 연구는 eXtreme Gradient Boosting(XGBoost) 모델을 활용하여 대규모 상수도관망 내 센서 위치를 최적화하는 방법론을 제안한다. XGBoost 모델은 여러 의사결정 나무(decision tree)를 활용하는 앙상블(ensemble) 모델이며, 오차에 따른 가중치를 부여하여 성능을 향상시키는 부스팅(boosting) 방식을 이용한다. 이는 분산 및 병렬 처리가 가능해 메모리리소스를 최적으로 사용하고, 학습 속도가 빠르며 결측치에 대한 전처리 과정을 모델 내에 포함하고 있다는 장점이 있다. 모델 구현을 위한 독립 변수 결정을 위해 압력 데이터의 변동성 및 평균압력 값을 고려하여 상수도관망을 대표하는 중요 절점(critical node)를 선정한다. 중요 절점의 압력 값을 예측하는 XGBoost 모델을 구축하고 모델의 성능과 요인 중요도(feature importance) 값을 고려하여 센서의 최적 위치를 선정한다. 이러한 방법론을 기반으로 상수도관망의 특성에 따른 경향성을 파악하기 위해 다양한 형태(예를 들어, 망형, 가지형)와 구성 절점의 수를 변화시키며 결과를 분석한다. 본 연구에서 구축한 XGBoost 모델은 추가적인 전처리 과정을 최소화하며 대규모 관망에 간편하게 사용할 수 있어 추후 다양한 입출력 데이터의 조합을 통해 센서 위치 외에도 상수도관망에서의 성능 최적화에 활용할 수 있을 것으로 기대한다.

  • PDF

Transient full core analysis of PWR with multi-scale and multi-physics approach

  • Jae Ryong Lee;Han Young Yoon;Ju Yeop Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.980-992
    • /
    • 2024
  • Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.