• Title/Summary/Keyword: Node Energy

Search Result 1,276, Processing Time 0.03 seconds

SB-MAC : Energy efficient Sink node Based MAC protocol for Wireless Sensor Networks (무선 센서 네트워크 에서 에너지 효율적인 싱크노드 기반 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.177-182
    • /
    • 2014
  • In this paper, we propose an energy efficient sink node based MAC protocol for Wireless Sensor Networks (WSNs). The proposed sink node-based MAC (SB-MAC) protocol uses a RB(rapid beacon) frame to save sender's energy consumption and to reduce transmission delay. The RB frame is a modified IEEE 802.15.4 beacon frame. The RB frame contains the length of the sender nodes data. Using this information other nodes except sender and receiver nodes can be stay sleep mode long time to reduce energy consumption. Results have shown that the SB-MAC protocol outperformed other protocols like X-MAC and RI-MAC in terms of packet delivery delay and energy consumption. The SB-MAC protocol is especially energy efficient for the networks with one sink node and many senders.

A MAC Protocol Based on Adaptive Timeout for Energy Efficient Wireless Sensor Networks (에너지 효율적인 무선 센서 네트워크를 위한 적응형 Timeout 기반 MAC 프로토콜)

  • Kwon, Yong-Hun;Kong, In-Yeup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.890-893
    • /
    • 2010
  • In wireless sensor networks, each node generally uses a battery because it is hard to replace or charge. For this reason, study for life time prolongation of each node within the limited energy source has become an important issue. So many ways are suggested to minimize the energy consumption for each node, especially energy efficient MAC protocols have been studied actively. T-MAC of contention based MAC protocol is that added the adaptability on fixed duty cycle of S-MAC. T-MAC allocates the fixed timeout before each node goes to sleep mode from active mode. If no data exchanged in a timeout, each node goes to sleep mode. Because of the timeout is always fixed, the absence of data exchange in a timeout will cause unnecessary energy consumption. In this paper, in order to improve the energy efficiency, we propose a MAC protocol based on adaptive timeout that analyze the probability of the timeout, and provides the modified timeout.

  • PDF

An Energy-Efficient Clustering Using Load-Balancing of Cluster Head in Wireless Sensor Network (센서 네트워크에서 클러스터 헤드의 load-balancing을 통한 에너지 효율적인 클러스터링)

  • Nam, Do-Hyun;Min, Hong-Ki
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.277-284
    • /
    • 2007
  • The routing algorithm many used in the wireless sensor network features the clustering method to reduce the amount of data transmission from the energy efficiency perspective. However, the clustering method results in high energy consumption at the cluster head node. Dynamic clustering is a method used to resolve such a problem by distributing energy consumption through the re-selection of the cluster head node. Still, dynamic clustering modifies the cluster structure every time the cluster head node is re-selected, which causes energy consumption. In other words, the dynamic clustering approaches examined in previous studies involve the repetitive processes of cluster head node selection. This consumes a high amount of energy during the set-up process of cluster generation. In order to resolve the energy consumption problem associated with the repetitive set-up, this paper proposes the Round-Robin Cluster Header (RRCH) method that fixes the cluster and selects the head node in a round-robin method The RRCH approach is an energy-efficient method that realizes consistent and balanced energy consumption in each node of a generated cluster to prevent repetitious set-up processes as in the LEACH method. The propriety of the proposed method is substantiated with a simulation experiment.

A Method to Improve Energy Efficiency Using a Function that Evaluate the Probability of Attempts to Verify a Report at Intermediate Node in USN (USN에서 중간 노드에서의 보고서 검증 시도 확률 평가 함수를 이용한 에너지 효율 향상 기법)

  • Lee, Hyun-Woo;Moon, Soo-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.21-29
    • /
    • 2011
  • Wireless sensor nodes operate in open environments. The deployed sensor nodes are very vulnerable to physical attacks from outside. Attackers compromise some sensor nodes. The compromised nodes by attackers can lead to false data injection into sensor networks. These attacks deplete the limited energy of sensor nodes. Ye et al. proposed the Statistical En-Route Filtering (SEF) as a countermeasure of the attacks. The sensor node in SEF examines the event reports based on certain uniform probability. Thus, the same energies are consumed in both legitimate reports and false reports. In this paper, we propose a method that each node controls the probability of attempts to verify a report to reduce energy consumption of sensor nodes. The probability is determined in consideration of the remaining energy of the node, the number of hops from the node to SINK node, the ratio of false reports. the proposed method can have security which is similar with SEF and consumes lower energy than SEF.

Balanced Cluster-based Multi-hop Routing in Sensor Networks (센서 네트워크의 균등분포 클러스터 기반 멀티홉 라우팅)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.910-917
    • /
    • 2016
  • Sensors have limited resources in sensor networks, so efficient use of energy is important. Representative clustering methods, LEACH, LEACHC, TEEN generally use direct transmission methods from cluster headers to the sink node to pass collected data. However, the communication distance of the sensor nodes at low cost and at low power is not long, it requires a data transfer through the multi-hop to transmit data to the sink node. In the existing cluster-based sensor network studies, cluster process and route selection process are performed separately in order to configure the routing path to the sink node. In this paper, in order to use the energy of the sensor nodes that have limited resources efficiently, a cluster-based multi-hop routing protocol which merges the clustering process and routing process is proposed. And the proposed method complements the problem of uneven cluster creation that may occur in probabilistic cluster methods and increases the energy efficiency of whole sensor nodes.

An Energy Awareness Congestion Control Scheme in Wireless Sensor Networks

  • Kim, Mi-Kyoung;Park, Jun-Ho;Seong, Dong-Ook;Kwak, Dong-Won;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • For energy-efficiency in Wireless Sensor Networks (WSNs), when a sensor node detects events, the sensing period for collecting the detailed information is likely to be short. The lifetime of WSNs decreases because communication modules are used excessively on a specific sensor node. To solve this problem, the TARP decentralized network packets to neighbor nodes. It considered the average data transmission rate as well as the data distribution. However, since the existing scheme did not consider the energy consumption of a node in WSNs, its network lifetime is reduced. In this paper, we propose an energy awareness congestion control scheme based on genetic algorithms in WSNs. The proposed scheme considers the remaining amount of energy and the transmission rate on a single node in fitness evaluation. Since the proposed scheme performs an efficient congestion control, it extends the network lifetime. In order to show the superiority of the proposed scheme, we compare it with the existing scheme through performance evaluation. It is shown that the proposed scheme enhances the data fairness and improves the network lifetime by about 27% on average over the existing scheme.

A Cluster-based Routing Protocol with Energy Consumption Balance in Distributed Wireless Sensor Networks (분산 무선센서 네트워크의 클러스터-기반 에너지 소비 균형 라우팅 프로토콜)

  • Kim, Tae-Hyo;Ju, Yeon-Jeong;Oh, Ho-Suck;Kim, Min-Kyu;Jung, Yong-Bae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • In this paper, a cluster-based routing protocol in distributed sensor network is proposed, which enable the balanced energy consumption in the sensor nodes densely deployed in the sensor fields. This routing protocol is implemented based on clusters with hierarchical scheme. The clusters are formed by the closely located sensor nodes. A cluster node with maximum residual energy in the cluster, can be selected as cluster head node. In routing, one of the nodes in the intersection area between two clusters is selected as a relay-node and this method can extend the lifetime of all the sensor nodes in view of the balanced consumption of communication energy.

Performance Evaluation of k-means and k-medoids in WSN Routing Protocols

  • SeaYoung, Park;Dai Yeol, Yun;Chi-Gon, Hwang;Daesung, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.259-264
    • /
    • 2022
  • In wireless sensor networks, sensor nodes are often deployed in large numbers in places that are difficult for humans to access. However, the energy of the sensor node is limited. Therefore, one of the most important considerations when designing routing protocols in wireless sensor networks is minimizing the energy consumption of each sensor node. When the energy of a wireless sensor node is exhausted, the node can no longer be used. Various protocols are being designed to minimize energy consumption and maintain long-term network life. Therefore, we proposed KOCED, an optimal cluster K-means algorithm that considers the distances between cluster centers, nodes, and residual energies. I would like to perform a performance evaluation on the KOCED protocol. This is a study for energy efficiency and validation. The purpose of this study is to present performance evaluation factors by comparing the K-means algorithm and the K-medoids algorithm, one of the recently introduced machine learning techniques, with the KOCED protocol.

CREEC: Chain Routing with Even Energy Consumption

  • Shin, Ji-Soo;Suh, Chang-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • A convergecast is a popular routing scheme in wireless sensor networks (WSNs) in which every sensor node periodically forwards measured data along configured routing paths to a base station (BS). Prolonging lifetimes in energy-limited WSNs is an important issue because the lifetime of a WSN influences on its quality and price. Low-energy adaptive clustering hierarchy (LEACH) was the first attempt at solving this lifetime problem in convergecast WSNs, and it was followed by other solutions including power efficient gathering in sensor information systems (PEGASIS) and power efficient data gathering and aggregation protocol (PEDAP). Our solution-chain routing with even energy consumption (CREEC)-solves this problem by achieving longer average lifetimes using two strategies: i) Maximizing the fairness of energy distribution at every sensor node and ii) running a feedback mechanism that utilizes a preliminary simulation of energy consumption to save energy for depleted Sensor nodes. Simulation results confirm that CREEC outperforms all previous solutions such as LEACH, PEGASIS, PEDAP, and PEDAP-power aware (PA) with respect to the first node death and the average lifetime. CREEC performs very well at all WSN sizes, BS distances and battery capacities with an increased convergecast delay.

Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer

  • Choi, Kang-Woo;Yi, Kang;Kyung, Chong Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5149-5167
    • /
    • 2017
  • Reducing energy consumption in a wireless video sensor network (WVSN) is a crucial problem because of the high video data volume and severe energy constraints of battery-powered WVSN nodes. In this paper, we present an adaptive dynamic resizing approach for a SRAM communication buffer in a WVSN node in order to reduce the energy consumption and thereby, to maximize the lifetime of the WVSN nodes. To reduce the power consumption of the communication part, which is typically the most energy-consuming component in the WVSN nodes, the radio needs to remain turned off during the data buffer-filling period as well as idle period. As the radio ON/OFF transition incurs extra energy consumption, we need to reduce the ON/OFF transition frequency, which requires a large-sized buffer. However, a large-sized SRAM buffer results in more energy consumption because SRAM power consumption is proportional to the memory size. We can dynamically adjust any active buffer memory size by utilizing a power-gating technique to reflect the optimal control on the buffer size. This paper aims at finding the optimal buffer size, based on the trade-off between the respective energy consumption ratios of the communication buffer and the radio part, respectively. We derive a formula showing the relationship between control variables, including active buffer size and total energy consumption, to mathematically determine the optimal buffer size for any given conditions to minimize total energy consumption. Simulation results show that the overall energy reduction, using our approach, is up to 40.48% (26.96% on average) compared to the conventional wireless communication scheme. In addition, the lifetime of the WVSN node has been extended by 22.17% on average, compared to the existing approaches.