• Title/Summary/Keyword: No-friction

Search Result 453, Processing Time 0.036 seconds

Friction Welding Analysis of Welding Part Shape with Flow Gallery by Friction Welding (마찰용접에 의해 유동부를 갖는 용접부 형상의 마찰용접해석)

  • Yeom S. H.;Nam K. O.;Yoo Y. S.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.109-112
    • /
    • 2005
  • Friction welding is welding method to use frictional heat of two material. A defect of friction welding is that create flash. The flash is part that must have cut after welding finished. But the welding part with flow gallery by friction welding can't cut flash. Therefore the welding part with flow gallery was designed with no effect in flow. In this research, decide the welding shape parameter of welding part with flow gallery and do friction welding analysis. In friction welding analysis, must input necessary S-S curve, friction coefficient by temperature change, upset pressure, RPM etc. According to analysis result, decided the optimal shape of welding part with no effect in flow.

  • PDF

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (II) - Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(II) - 작동유체 유동마찰저항 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The output of the Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of regenerator matrix, characteristics of flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. With the wire screen of No. 50 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 3 times higher than that of one directional flow, not too much influenced by the number of packed meshes. 2. With the wire screen of No. 100 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 2.5 times on the average higher than that of one directional flow, not too much influenced by the number of packed meshes. 3. Under one directional flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f=\frac{0.00326639}{Re\iota}-1.29106{\times}10^{-4}$$ 4. Under oscillating flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f_r=\frac{0.000918567}{Re\iota}+1.86101{\times}10^{-5}$$ 5. The pressure drop is shown as high in proportion as the number of meshes has been higher, and the number of packed wire screens as matrices increases.

Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk (외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성)

  • Kim, Young-Kyu;Kim, Sang-Ho;Kwon, Seok-Jin;Chung, Su-Young;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.975-985
    • /
    • 2011
  • Cu-Matrix sintered brake pads and low alloyed heat resistance steel are most applied to basic brake system for high energy moving machine. In this research, we analyzed tribological characteristics for influence of air velocity between disk and pad. At low brake pressure with air flow, friction stability was decreased due to no formation of tribofilm at disk surface. But there are no significant change of friction coefficient at all test conditions. Wear rate of friction materials were decreased with increasing of air flow velocity. In result, air flow velocity influenced friction stability, wear rate of friction materials and disk but not friction coefficient.

  • PDF

A Study on the Friction Characteristics in Tube Hydroforming Process (튜브 하이드로포밍 공정에서의 마찰특성에 관한 연구)

  • 김영석;손현성;한수식
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.475-481
    • /
    • 2002
  • Tube hydroforming is a relatively new technology in comparison with conventional stamping process. Thus, there is no large knowledge base to assist the product and process designers, especially from the friction point of view. This paper covers the topic of friction and lubrication with regard to tube hydroforming. It presents the fact that frictional characteristic can have an effect on the formability of specific components. The presented concept describes the equipment which is required to determine the friction coefficient. Some example results of the friction and bulge test are shown.

Investigation of friction effects between needles patterned using laser and elastomer (레이저에 의해 패터닝 된 바늘과 탄성중합체와의 마찰 효과)

  • Kim, Jae-Gu;Ro, Seung-Kook;Park, Jong-Kweon;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • The friction force of patterned needle in elastomer have been investigated to verify the application for bio and plastic industry. The micro pattern on the needle surface were prepared by 266 nm, 20 ns laser and 800 nm, 220 fs laser, which were able to generate the different surface roughness. The friction force was measured by the load cell of 10 N capacity. As the results, the friction force of no patterned needle is almost constant during the needle penetrates the silicone rubber sample. However, the needle having asperities shows the variation of the friction force. The higher the surface roughness is, the smaller the friction force is until the surface roughness is very high. In our experiment conditions, the reduction of the friction force by 20 % compared to no pattern needle was achieved with straight and $50{\mu}m$ discrete line generated by 266 nm, 20 ns laser.

  • PDF

A Numerical Study on Flow Characteristics of a Honeycomb seal (Honeycomb Seal의 유동 특성 해석)

  • Hong, E.;Hur, N.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.153-157
    • /
    • 2000
  • Honeycomb seals are used widely in gas turbines due to their good sealing performance and rotor-dynamic stability. Three-Dimensional complex flows in a honeycomb seal were analyzed in the present study. Friction factors were computed to predict the performance of a honeycomb seal based on pressure drop results for various honeycomb cell geometry and Reynolds numbers. Computed results for friction factor are compared to the available experimental data. Unlike in the experiment, where 'Friction-Factor Jump' phenomena are reported for some cases, computed results show no jump phenomena. The friction factors, however, are in good agreement with the experiment in no-jump cases.

  • PDF

A Study on Pricision Positioning Control using a Fuzzy Friction Compensation (퍼지마찰력보상기를 이용한 정밀위치제어에 관한 연구)

  • Yun, S.H.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1045-1049
    • /
    • 1996
  • For the precision positioning and tracking control, the proper friction compensation is essential. The friction causes steady state error. The friction compensation based on the velocity and the controlling input or the desired velocity provides limited performance if the compensation value is fixed. In this paper, a friction compensation scheme using a fuzzy logic is proposed. The friction compensation amount is adjusted depending on the velocity and controlling input. The proposed fuzzy friction compensator with a pole-assignment controller is implemented in a linear positioning system. To illustrate the effectiveness of this scheme, computer simulations and experiments are carried out for the cases of no friction compensation, the proposed fuzzy friction compensation, and another friction compensation scheme based on velocity and control input, and the results are compared with each other.

  • PDF

Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow (유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석)

  • Yeom, Sung-Ho;Kim, Bum-Nyun;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • Friction welding is a welding method to use frictional heat of a couple of materials. In this paper object is that design the welding part shape with the flow gallery part which there is no effect in flow. Decided the welding part design parameter and doing the friction welding analysis used the rigid-plastic FEM program DEFORM-2D. To do friction welding analysis must input necessary flow stress data, friction coefficient by temperature change, upset pressure and Revolution per minute etc. According to analysis result, it decided the optimal shape of welding part with no effect in flow.

A FLUID TRANSIENT ANALYSIS FOR THE PROPELLANT FLOW WITH AN UNSTEADY FRICTION IN A MONOPROPELLANT PROPULSION SYSTEM (단일추진제 추진시스템의 비정상 마찰을 고려한 과도기유체 해석)

  • Chae Jong-Won
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.43-51
    • /
    • 2006
  • A fluid transient analysis on the Koreasat 1 & 2 pipeline system is conducted through numerical parametric studies in which unsteady friction results are compared with quasi-steady friction results and show relatively accurate prediction of the response curve with the unsteady friction. The code developed and used in this analysis has finished verification through comparing with the original Zielke model, the full and recursive convolution model and quasi-steady model as a reference. The unsteady friction is calculated by the recursive convolution Zielke model in which a complete evolution history of velocity field is no longer required so that it makes the fluid transient analysis on the complicated system possible. The results show that the application of quasi-steady friction to model cannot predict the entire response curve properly except the first peak amplitude but the application of unsteady friction to model can predict reasonably the response curve, therefore it is to know the characteristics of the propulsion system.