• Title/Summary/Keyword: No slip

Search Result 291, Processing Time 0.025 seconds

HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS (주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Analysis of Sloping Ground When Lifting with Force Platform (힘판을 이용한 들기 작업시의 경사면 분석)

  • 서승록;김종석
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.77-86
    • /
    • 2000
  • Even manual materials handling tasks(MMHT) is decreasing by adopt of automatic manufacturing system & transportation supporting machine because of increase of productivity, wage lack of labor, safety, in fact working at inclined & complicated slope such as farm, orchard, harbor loading & unloading, logging place and mining place can't be substituted by machine perfectly. So, workers should do MMHT at this place by themselves, lifting on slope can cause much of hazard, include falling. Keeping balance net to slip can be a reason of low back pain(LBP) by overloaded musculoskeletal system but, there's no enough study about lift on slope. Therefore, In this study, we assessed and analyzed change of center of pressure(COP) when lifting on slope by force platform. The result showed that the length lengthen as increasing angle of slope. Especially, the length extremely increased over 15°. Through These basic result, present proper angle boundary, prevent industrial accidents and give proper data not only lifting but also pushing and pulling on slope someday.

  • PDF

Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack

  • Pantelidis, Lysandros;Gravanis, Elias;Gkotsis, Konstantinos-Paraskevas
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • This paper investigates the effect of the width of failure and tension crack (TC) on the stability of cohesive-frictional soil slopes in three dimensions. Working analytically, the slip surface and the tension crack are considered to have spheroid and cylindrical shape respectively, although the case of tension crack having planar, vertical surface is also discussed; the latter was found to return higher safety factor values. Because at the initiation of a purely rotational slide along a spheroid surface no shear forces develop inside the failure mass, the rigid body concept is conveniently used; in this respect, the validity of the rigid body concept is discussed, whilst it is supported by comparison examples. Stability tables are given for fully drained and fully saturated slopes without TC, with non-filled TC as well as with fully-filled TC. Among the main findings is that, the width of failure corresponding to the minimum safety factor value is not always infinite, but it is affected by the triggering factor for failure (e.g., water acting as pore pressures and/or as hydrostatic force in the TC). More specifically, it was found that, when a slope is near its limit equilibrium and under the influence of a triggering factor, the minimum safety factor value corresponds to a near spherical failure mechanism, even if the triggering factor (e.g., pore-water pressures) acts uniformly along the third dimension. Moreover, it was found that, the effect of tension crack is much greater when the stability of slopes is studied in three dimensions; indeed, safety factor values comparable to the 2D case are obtained.

Tear Patterns in Traumatic and Atraumatic Meniscal Injuries of the Knee (외상과 비외상에 의한 슬관절 반월상 연골의 파열 형태)

  • Sohn, Jong-Min;Kim, Hyoung-Gwan;Jahng, Ju-Hae;Choi, Moon-Ku;Moon, Chan-Woong
    • Journal of the Korean Arthroscopy Society
    • /
    • v.2 no.2
    • /
    • pp.147-150
    • /
    • 1998
  • We reviewed the charts and photos taken during arthroscpy of 218 knees of 214 patients(240 menisci) retrospectively. The male was 156 cases(73%) and the female 58 cases(27%). The mean age of the patients was 35 years(range, 7-68). The patients who had definite trauma history were classified as trauma group(Group 1), and the patients who had no or could not recall trauma history were as atrauma group(Group 2). The trauma group was subclassified into the the patients with sports injury, traffic accident, fall down, slip down, direct injury, and miscellaneous according to the causes of the trauma. The patterns of meniscal tear were classified into longitudinal, bucket-handle, horizontal, transverse, flap, complex, and degenerative tear on the basis of O'Connor's classification. The aim of this study was to compare the meniscal tear patterns between trauma group(Group 1) and atrauma group(Group 2) and between the patients before and after the age of 40. The results were as follows ; 1) The difference in the incidence of tear between medial and lateral meniscus was not significant statistically. 2) In Group 1, 60% of the cases showed the longitudinal and bucket-handle tear and 52% of the cases of Group 2 were horizontal tear. 3) In the patients before the age of 40, the longitudinal and bucket-handle tear were 52% of the cases and in the patients over 40, tear patterns which were thought to be related to degenerative change, horizontal and degenerative tear were more than half of the cases (51%).

  • PDF

Verification of Parameters Influencing Bond Strength between Fiber-Reinforced Polymer Laminates and Concrete (연속섬유(FRP)시트와 콘크리트의 부착강도 영향 요인 검증)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.414-423
    • /
    • 2020
  • Fiber-reinforced polymer (FRP) laminate sheets, which are lightweight with high strength, are commonly used to reinforce concrete structures. The bonding strength is vital in structural design. Therefore, experiments and analytical studies with differing variables (concrete compressive strength and tensile strength, the elastic modulus of concrete and FRP, thickness of concrete and FRP, width of concrete and FRP, bond length, effective bond length, fracture energy, maximum bond stress, maximum slip) have been conducted to obtain an accurate numerical model of the bond strength between an FRP sheet and concrete. Although many models have been proposed, no validated model has emerged that could be used easily in practice. Therefore, this study analyzed the parameters that influence the bond strength that were used in 23 of the proposed models (Khalifa model, Iso model, Maeda model, Chen model, etc.) and compared them to the test results of 188 specimens via the numerical results of each model. As a result, an easy-to-use practical model with a simple and high degree of expression was proposed based on the Iso model combined with the effective bond length model that was proposed by Holzenkӓmpfer.

Numerical Study on Flow Over Oscillating Circular Cylinder Using Curved Moving Boundary Treatment (곡선경계처리법을 이용한 주기적으로 진동하는 실린더주위의 유동해석)

  • Kim, Hyung-Min;Jhon, Myung-S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.895-903
    • /
    • 2007
  • CMBT(Curved Moving Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the curved solid wall of moving obstacle in a flow field. In our research CMBT was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of CMBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of Navier-Stokes equation with deforming mesh technique. The simulations were performed in a moderate range of reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is ar Re=250 and the result is the same as the case of fixed cylinder. As the cylinder approaching to one wall, the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. As the velocity ratio increase the third vortex are generated by interacting with the 2nd vortexes developed on the upper and lower wall boundary layer. The resultant $C_d$ decrease as reynolds number increasing and the Cd approached to a value when Re>1000.

Effect of Stretching on the Microstructure and Mechanical Properties of Al-Li-Cu-Mg Alloys (Al-Li-Cu-Mg(Ag, Ce)합금의 미세조직 및 기계적성질에 미치는 stretching의 영향)

  • Sin, Hyeon-Sik;Jo, Gwon-Gu;Jeong, Yeong-Hun;Sin, Myeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.1005-1112
    • /
    • 1995
  • The Effects of 0~9% stretching on the microstructure and mechanical properties have been investigated in Al-Li-Cu-Mg alloys. Stretching made T$_1$(Al$_2$CuLi) precipitates finer and more uniform, however, had no effect on the size of $\delta$'. The number of sheared $\delta$'precipitates distributed in the matrix were reduced. The 6% stretching improved the yield strength of the alloys aged at 15$0^{\circ}C$ for 120 hours from 328~342 MPa to 466~488MPa, however, decreased the elongation from 9.7~10.4% to 5.7%.

  • PDF

The Correlation between Cross-sectional Area of Lumbar Paraspinal Muscles and Sponylolisthesis; A Retrospective Study (요추 주변 근육 단면적과 척추전방전위증의 상관성에 대한 후향적 연구)

  • Park, Hye-Sung;Kim, Je-In;Kim, Koh-Woon;Cho, Jae-Heung;Song, Mi-Yeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.26 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • Objectives To investigate correlation between slip percentage (SP) of spondylolisthesis and cross-sectional area (CSA) of lumbar paraspinal muscles; psoas major (PM), multifidus (MU) and erector spinae (ES). Methods A retrospective study was carried out in 120 spondylolisthesis patients who had visited the Spine center of Kyung Hee University Hospital at Gangdong and had taken lumbar MRI. CSA of lumbar paraspinal muscles was measured from axial T2-weighted MRI and divided by CSA of vertebral body to avoid weight's influence. SP was also measured from sagittal MRI. Results SP increase has significant correlation with decreased CSA-MU (r=0.37, p<0.01) and increased CSA-ES (r=0.19, p<0.05). There was no significant correlation between SP and CSA-PM. Conclusions MU atrophy and ES hypertrophy have significant correlation with SP of spondylolisthesis. CSA of lumbar paraspinal muscles can be a risk factor of progression of spondylolisthesis and compensation for the instability.

Numerical Simulation of the Flow around Advancing Ships in Regular Waves using a Fixed Rectilinear Grid System (고정된 직교격자계를 이용한 파랑 중 전진하는 선박주위 유동의 수치시뮬레이션)

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.419-428
    • /
    • 2014
  • This paper presents a numerical simulation method for the flow around advancing ships in regular waves by using a rectilinear grid system. Because the grid lines do not consist with body surface in the rectilinear grid system, the body geometries are defined by the interaction points of those grid lines and the body surface. For the satisfaction of body boundary conditions, no-slip and divergence free conditions are imposed on the body surface and body boundary cells, respectively. Meanwhile, free surface is defined with the modified marker density method. The pressure on the free surface is determined to make the pressure gradient terms of the governing equations continuous, and the velocity around the free surface is calculated with the pressure on the free surface. To validate the present numerical method, a vortex induced vibration (VIV) phenomenon and flows around an advancing Wigley III ship model in various regular waves are simulated, and the results are compared with existing and corresponding research data. Also, to check the applicability to practical ship model, flows around KRISO Container Ship (KCS) model advancing in calm water are numerically simulated. On the simulations, the trim and the sinkage are set free to compare the running attitude with some other experimental data. Moreover, flows around the KCS model in regular waves are also simulated.

Flow behaviors of square jets surface discharged and submerged discharged into shallow water (천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동)

  • Kim, Dae-Geun;Kim, Dong-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.