• Title/Summary/Keyword: No load temperature

Search Result 243, Processing Time 0.034 seconds

A Operated Characteristic Analysis of HTS Cable in Unbalanced Load Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 불평형 부하에서의 초전도 케이블의 운전특성 해석)

  • Lee, Hyun-Chul;Hwang, Si-Dol;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1713-1719
    • /
    • 2008
  • A high temperature superconducting power cable (HTS power cable) was applied large current capacity by no resistance in normal state. Fault state was risen out of over-current but, it was limited to resistance. This study was modeling equivalence, and unbalanced state analyzed operating characteristic of HTS power cable. The equivalence model was composed superconductor, shield, and former part. This model simulation was appeared conductor and shield current in normal state, but unbalanced state was appeared former current as rise current by resistance. So it need to sufficiently influenced the quench characteristic when the former design.

Characteristic Analysis of a Three Phase HTS Transformer (3상 고온초전도 변압기의 특성해석)

  • Lee, S.W.;Lee, H.J.;Cha, G.S.;Lee, J.K.;Choi, K.D.;Ryu, K.W.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.720-722
    • /
    • 2001
  • The high temperature superconductor transformer gains interests from the industries. This paper examined characteristics of the laboratory scale three phase HTS transformer and Brandt equation is used to calculate the loss by perpendicular magnetic field in transformer winding. To estimate the performance of the three phase HTS transformer no load characteristics, short circuit characteristics are calculated by using finite element method. Transient characteristics of sudden short circuit during full load operation have been examined. Effect of the resistance growth in the HTS wire from the quench of the wire is included in the calculation.

  • PDF

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

Measurement of Pressure-Rise at No-Load in 800kV Model Interrupter (800kV 차단부의 무부하 압력상승 측정)

  • Chang, K.C.;Song, K.D.;Chung, J.K.;Song, W.P.;Kim, J.B.;Park, K.Y.;Shin, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.475-478
    • /
    • 1995
  • The variations of cold gas properties such as density, pressure, temperature and velocity which are dependent each other are closely related with the dielectric recovery of an interrupter. So, the pressure-rises at no-load in the puffer cylinder and in front of fixed arcing contact of 800kV model interrupter were measured experimentally using pressure transducers of strain gage type and semiconducting type, respectively. The maximum value of pressure-rise in the puffer cylinder increased almost linearly from 7.6 bar at the minimum operated pressure to 9.7 bar at the maximum operated pressure, while the pressure-rise in front of fixed arcing contact was independent with the operated pressure. The measured values will be utilized in verifying the self-developed cold flow analysis program and as an input of commercialized CFD program package.

  • PDF

Effect of Additives on Catalytic Activity in Thermal Catalytic De-NOx Process (Thermal catalytic de-NOX 공정에서 첨가제가 촉매의 활성에 미치는 영향에 관한 연구)

  • 이진구;김태원;최재순;김정호;이재수;장경욱;박해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • We sdudied effect of additives on catalytic activity in thermal catalytic de-NOx process which was composed of thermal reduction, catalytic reduction and catalytic oxidation stage. Pd-Pt/${\gamma}$-$Al_2O_3$ catalysts with the addition of transition metals(Co, Cu, Fe, Ni, W, Zn, Zr) and rare earth metals(Ce, Sr) were prepared by the conventional washcoating method. Those catalysts were characterized by CO pulse chemisorption, ICP, $N_2$ adsorption, SEM and XRD. The effect of catalyst additives on NOx removal for diesel emission was studied in thermal catalytic de-NOx process at reduction temperature(350~50$0^{\circ}C$), space velocity(5,000~20,000 $hr^{-1}$) and the engine load(0~120kW). The concentraton of CO, $CO_2$, NO and $NO_2$ in the exhaust gas increased with the engine load. On the other hand the concentration of $O_2$ decreased. The de-NOx activityof all prepared catalysts increased with respect to high CO and low $O_2$ level in the thermal reduction stage of the process. Insertion of Ce to Pt-Pd/${\gamma}$-$Al_2O_3$ catalyst showed the best activity of all the catalysts under these experimental conditions. De-NOx catalysts are effective to remove CO in addition to NOx in the catalytic reduction stage.

  • PDF

Technical Feasibility of Ethanol as a Fuel for Farm Diesel Engines (농용(農用) 디이젤 엔진 연료(燃料)로서의 에타놀 이용(利用)에 관(關)한 연구(硏究))

  • Ryu, Kwan Hee;Bae, Yeong Hwan;Yoo, Soo Nam
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1982
  • The objective of this study was to find out the technical feasibility of ethanol-diesel fuel blends as a diesel engine fuel. Fuel properties essential to the proper operation of a diesel engine were determined for blends containing several concentrations of ethanol in No. 2 diesel fuel. A single-cylinder diesel engine for a power tiller was used for the engine tests, in which load, speed and fuel consumption rate were measured. The fuels used in tests were No. 2 diesel fuel and a blend containing 10-percent ethanol and 90-percent No. 2 diesel fuel. The results of the study are summarized as follows. 1. It was not possible to blend ethanol and No. 2 diesel fuel as a homogeneous solution even though anhydrous ethanol was used. The problem of blending ethanol in No. 2 diesel fuel could be solved by adding butanol about 5% of the amount of ethanol in the blends. 2. Because ethanol had a much lower boiling point ($78.3^{\circ}C$ under atmospheric pressure) than a diesel fuel, it was necessary to store ethanol-diesel fuel blends airtight in order to prevent them from evaporation losses of ethanol. 3. The addition of ethanol to No. 2 diesel fuel lowered the fuel viscosity and the cetane rating, but a blend of 10% ethanol and 90% diesel fuel had a viscosity and a cetane rating well above the KS minimum values for No. 2 diesel fuel. 4. At the rated speed, the specific fuel consumption of No.2 diesel fuel was lower than that of the 10% ethanol blend for the almost entire range of load. However, under the overload condition the specific fuel consumption was lower for the 10% ethanol blend. 5. Under the variable-speed full-load tests, both fuels produced approximately the same torque and power. At the speeds of 1600rpm or below, the specific fuel consumption of No. 2 diesel fuel was lower than that of the 10% ethanol blend. At the speeds of 1600rpm or above, however, the specific fuel consumption was lower for the 10% ethanol blend. 6. At the ambient temperature above $15^{\circ}C$, the use of the 10% ethanol blend in the engine created a vapor lock in the fuel injection pump and stalled the engine. The vapor locking problem was overcome by chilling the surroundings of the fuel injection pump and the cylinder head with water.

  • PDF

ENVIROMENTAL CONDITION DURING AIR SHIPMENT OF HORTICULTURAL PRODUCTS FROM OKINAWA TO TOKYO

  • Akinaga, Takayoshi;Kohda, Yoshihiro
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.413-422
    • /
    • 1993
  • Air shipment affords the quickest possible delivery of horticultural products. The price of air shipped horticultural products are relatively high as most of these products are perishable. Usually the temperature in the cargo compartment is not controlled during flight. Thus, special attention should be paid to procooling prior to shipment. The environmental condition during transportation of horticultural products is an essential parameter for maintaining the quality of perishable products. Commonly horticultural products were loaded by ULD(Unit Load Devices) as a container or pallet in the aircraft (except for small aircraft) . Therefore, inside temperature of the container and cargo compartment came into question. Scarce literature on the relationship between environmental condition and quality changes of horticultural products during air shipment can be found. By the stand point of keeping fresh quality, investigations on the actual condition of air shipments were carried out to improve the technique during the distribution process of fresh horticultural products. Temperature, humidity, atmospheric pressure, carbon dioxide, ethylene, impacts, and changes in quality during the air shipment of snapbeans, okras and chrysanthemums were measured. Temperature was measured by recording thermometers, relative humidity by recording hygrometers, atmospheric pressure by a strain -guage type pressure sensor, carbon dioxide by testing tubes, ethylene by sampling bags and a gaschromatograph, impacts and vibrations by impact recorders and a 3D accelerometer. Relationships between environmental conditions and quality changes during air shipments were clarified. It was expected from investigations into actual shipments that the ventilation and insulation properties of air freight containers were related to the quality of agricultural products. Aircraft can no directly load and unload trucks into them. The transshipment is inclined to cause shocks and vibrations, and to invite damages within a short time.

  • PDF

Thermal and Structural Analyses of Semi-metallic Gasket Joined with Graphite Seal for Ship Engine Piping Flange (선박엔진 배관 플랜지용 세미금속 가스켓의 열전달 및 구조해석)

  • Oh, Jeong-seok;Lee, In-sup;Yoon, Han-ki;Sung, Heung-kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.352-356
    • /
    • 2017
  • We performed thermal and structural analyses to evaluate the structural integrity of a semi-metal gasket for a flange with increases in the internal fluid temperature and pressure using a commercial FEA program. As a thermal analysis result, the temperature distribution of the gasket body increased with an increase in the internal fluid temperature until the maximum fluid temperature of $600^{\circ}C$. In addition, the structural analysis showed that contact pressures of more than 35 MPa occurred uniformly in the graphite seal regions. It was found that no fluid leakage occurred under the load conditions for the structural analysis because the contact pressure in the graphite seal region was greater than the maximum internal fluid pressure of 35 MPa. Therefore, we demonstrated the structural integrity of the semi-metal gasket by performing the thermal and structure analyses under the maximum fluid temperature of $600^{\circ}C$ and the internal fluid pressure of 35 MPa.

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).