• Title/Summary/Keyword: Nitrous oxide emission

Search Result 134, Processing Time 0.033 seconds

Measurement Uncertainty of Nitrous Oxide Concentrations from a Upland Soil Measured by an Automated Open Closed Chamber Method (밭토양에서 폐쇄형 자동 챔버법으로 측정한 아산화질소 농도에 대한 측정 불확도)

  • Ju, Ok Jung;Kang, Namgoo;Lim, Gap June
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • BACKGROUND: The closed chamber method is the most commonly used for measuring greenhouse gas emissions from upland fields. This method has the advantages of being simple, easily available and economical. However, uncertainty estimation is essential for accurate assessment of greenhouse gas emissions and verification of emission reductions. The nitrous oxide emissions from upland field is very important for the nitrogen budget in the agriculture sectors. Although assessment of uncertainty components affecting nitrous oxide emission from upland field is necessary to take account of dispersion characteristics, research on these uncertainty components is very rare to date. This study aims at elucidation of influencing factors on measurement uncertainty of nitrous oxide concentrations measured by an automated open closed chamber method from upland field. METHODS AND RESULTS: The nitrous oxide sampling system is located in the upland field in Gyeonggi-do Agricultural Research and Extension Services (37°13'22"N, 127°02'22"E). The primary measurement uncertainty components influencing nitrous oxide concentrations (influencing factors) investigated in this research are repeatability, reproducibility and calibration in the aspects of nitrous oxide sampling and analytical instrumentation. The magnitudes of the relative standard uncertainty of each influencing factor are quantified and compared. CONCLUSION: Results of this study show what influencing factors are more important in determination of nitrous oxide concentrations measured using the automated open closed chambers located in the monitoring site. Quantifying the measurement uncertainty of the nitrous oxide concentrations in this study would contribute to improving measurement quality of nitrous oxide fluxes.

The Differences of Nitrous Oxide (N2O) Emissions as Crop Presence and Location of Gas Sampling Chambers in Upland (밭토양에서 챔버 위치와 작물체 유·무에 따른 아산화질소 배출량 차이 분석)

  • Jeong, Hyun Cheol;Choi, Eun Jung;Lee, Jong Sik;Kim, Gun Yeob;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.427-432
    • /
    • 2016
  • Nitrous oxide is one of the main sources of greenhouse gases and its concentration has increased from 273 ppb in 1,750 to 315 ppb in 2005. Specially, nitrogen fertilizer used in agricultural soils is considered as an important source of atmospheric $N_2O$ emission. This study was conducted to estimate the difference of nitrous oxide emission as chamber position on furrow and ridge and crop existence in gas sampling chamber on upland. Four treatments used in this experiment were (1) no-fertilizer without crop in chamber on ridge, (2) fertilizer application without crop in chamber on ridge, (3) fertilizer application with crop in chamber on ridge, (4) fertilizer application without crop in chamber on ridge and furrow. Nitrous oxide emission at fertilizer application with crop in chamber on ridge were the highest while were the lowest at no-fertilizer without crop in chamber on ridge. There was no significant difference of nitrous oxide emission by chamber position, but total emission by crop existence in chamber was significant difference. Therefore, in order to estimate greenhouse gases emission using chamber method in upland, it should be considered in correlation with crop existence in chamber and characteristic changes like as the soil moisture, microbial flora by crop growth stage.

Finding the operation conditions to minimize nitrous oxide emission from MLE configuration wastewater treatment plant using computer simulation program (컴퓨터 시뮬레이션을 이용한 MLE 공법 하수처리장에서 최저 아산화질소 발생 운전 조건 파악)

  • Jisoo Han;Mincheol Kim;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.19-38
    • /
    • 2023
  • Nitrous oxide, one of the six greenhouse gases from Kyoto protocol, is known to be emitted in biological nitrification and denitrification reactions at wastewater treatment plant. In this study, EQPS which is a computer program that can simulate nitrous oxide gas emission amount at wastewater treatment plants is used. The MLE process which treats wastewater from combined sewer is studied. Operational variables which are MLR, water temperature at reactor and primary clarifier by-pass percentage are changed to define the condition which produces the least amount of nitrous oxide gas. 200 % of MLR, 20 ℃ of water temperature at bioreactor and 15 % of primary clarifier by-pass percentage are shown the least nitrous oxide emission factor. Also, it is found that the deep aeration tank produces less amount of nitrous oxide gas since less air is required to meet oxygen demand in this type of aeration tank.

The Effects of Zeolite on Ammonia, Nitrous Oxide Emission, and Forage Yield from Pig Slurry Applied to the Forage Corn Cropping

  • Choi, Ah-Reum;Park, Sang-Hyun;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.274-278
    • /
    • 2020
  • Pig slurry (PS) is the most applicable recycling option as an alternative organic fertilizer. The application of pig slurry has the risk of air pollution via atmospheric ammonia (NH3) and nitrous oxide (N2O) emission. The zeolite has a porous structure that can accommodate a wide variety of cations, thus utilizing for the potential additive of deodorization and gas adsorption. This study aimed to investigate the possible roles of zeolite in mitigating NH3 and N2O emission from the pig slurry applied to the maize cropping. The experiment was composed of three treatments: 1) non-N fertilized control, 2) pig slurry (PS) and 3) pig slurry mixed with natural zeolite (PZ). Both of NH3 and N2O emission from applied pig slurry highly increased by more than 3-fold compared to non-N fertilized control. The NH3 emission from the pig slurry was dominant during early 14 days after application and 20.1% of reduction by zeolite application was estimated in this period. Total NH3 emission through whole period of measurement was 0.31, 1.33, and 1.14 kg ha-1. Nitrous oxide emission in the plot applied with pig slurry was also reduced by zeolite treatment by 16.3%. Significant increases in forage and ear yield, as well as nutrient values were obtained by pig slurry application, while no significant effects of zeolite were observed. These results indicate that the application of zeolite and pig slurry efficiently reduces the emission of ammonia and nitrous oxide without negative effects on maize crop production.

Estimation of National Greenhouse Gas Emissions in Agricultural Sector from 1990 to 2013 - Focusing on the Crop Cultivation - (1990년부터 2013년까지 농업 분야 국가 온실가스 배출량 평가 - 경종부문 중심으로 -)

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun-il;Lee, Jong Sik
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.443-450
    • /
    • 2016
  • The major greenhouse gases (GHGs) in agricultural sector are methane ($CH_4$), nitrous oxide ($N_2O$), carbon dioxide ($CO_2$). GHGs emissions are estimated by pertinent source category in a guideline book from Intergovernmental Panel on Climate Change (IPCC) such as methane from rice paddy, nitrous oxide from agricultural soil and crop residue burning. The methods for estimation GHGs emissions in agricultural sector are based on 1996 and 2006 IPCC guideline, 2000 and 2003 Good Practice Guidance. In general, GHG emissions were calculated by multiplying the activity data by emission factor. The total GHGs emission is $10,863Gg\;CO_2-eq$. from crop cultivation in agricultural sector in 2013. The emission is divided by the ratio of greenhouse gases that methane and nitrous oxide are 64% and 34%, respectively. Each gas emission according to the source categories is $7,000Gg\;CO_2-eq$. from rice paddy field, $3,897Gg\;CO_2-eq$. from agricultural soil, and $21Gg\;CO_2-eq$. from field burning, respectively. The GHGs emission in agricultural sector had been gradually decreased from 1990 to 2013 because of the reduction of cultivation. In order to compare with indirect emissions from agricultural soil, each emission was calculated using IPCC default factors (D) and country specific emission factors (CS). Nitrous oxide emission by CS applied in indirect emission, as nitrogen leaching and run off, was lower about 50% than that by D.

Effect of Dicyandiamide and Hydroquinone on Ammonia and Nitrous Oxide Emission from Pig Slurry Applied to Timothy (Phleum pretense L.) Sward

  • Park, Sang-Hyun;Lee, Bok-Rye;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2016
  • The objective of this study was to determine the effect of nitrification inhibitor dicyandiamide (DCD) and urease inhibitor hydroquinone (HQ) on ammonia ($NH_3$) and nitrous oxide ($N_2O$) emission from pig slurry applied to Timothy (Phleum pretense L.) sward. The daily emission of ammonia ($NH_3$) and nitrous oxide ($N_2O$) was monitored for 9 days in three different treatments; 1) control (only pig slurry application), 2) DCD treatment (pig slurry + DCD), and 3) HQ treatment (pig slurry + HQ). Most $NH_3$ emission occurred after 4~5 days in three treatments. Total $NH_3$ emission, expressed as a cumulative amount throughout the measurement time, was $1.33kg\;N\;ha^{-1}$ in the control. The DCD and HQ treatment decreased total $NH_3$ emission by 16.3% and 25.1%, respectively, compared to the control. Total $N_2O$ emission in the control was $47.1g\;N\;ha^{-1}$. The DCD and HQ treatment resulted in a reduction of 67.9% and 41.8% in total $N_2O$ emission, respectively, compared to the control. The present study clearly indicated that nitrification and urease inhibitor exhibited positive roles in reducing N losses through $NH_3$ and $N_2O$ emission.

Effect of Intermittent Drainage on Nitrous Oxide Emission and Global Warming Potential in Rice Paddy Soil

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1187-1193
    • /
    • 2012
  • Water control is mainly one of the key factors that can affect nitrous oxide ($N_2O$) emissions from soils. This study was undertaken to determine the effect of intermittent drainage compared to continuous flooding (conventional water regime) on $N_2O$ emission to global warming potential (GWP) with NPK (standard cultivation practice), NPK+Straw, and PK fertilizations. Nitrous oxide emission rates were collected twice a week using a closed chamber method. With continuous flooding, nitrogen (N) application increased $N_2O$ emission by 106.6% ($0.64kg\;ha^{-1}$ in NPK) with respect to the PK treatment ($0.31kg\;ha^{-1}$), and straw addition to NPK enhanced 148.3% of seasonal $N_2O$ flux ($0.77kg\;ha^{-1}$ in NPK+Straw). Although seasonal $N_2O$ emission slightly increased by 16.1-42.9% with intermittent irrigation, its seasonal $CH_4$ emission drastically reduced at 43.5-52.8% resulting in a lower GWP at 48.9-58.5% with respect to that of continuously flooded treatments ($4.51Mg\;CO_2\;ha^{-1}$, PK; $7.60Mg\;CO_2\;ha^{-1}$, NPK; $14.55Mg\;CO_2\;ha^{-1}$, NPK+Straw). Rice yield, at similar fertilization with the continuously-flooded rice field, was not affected by intermittent irrigation. Conclusively, intermittent irrigation can be very effective and a rational soil management strategy to mitigate GWP with considering rice productivity in a temperate paddy rice field like Korea.

Effect of Aeration on Nitrous Oxide ($N_2O$) Emission from Nitrogen-Removing Sequencing Batch Reactors

  • Kim, Dong-Jin;Kim, Yuri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this study, nitrous oxide ($N_2O$) emission was compared between the operations of two different sequencing batch reactors, conventional sequencing batch reactor (CNVSBR) and simultaneous nitrification and denitrification sequencing batch reactor (SND-SBR), using synthetic wastewater. The CNV-SBR consisted of anoxic (denitrification) and aerobic phases, whereas the SND-SBR consisted of a microaerobic (low dissolved oxygen concentration) phase, which was achieved by intermittent aeration for simultaneous nitrification and denitrification. The CNV-SBR emitted 3.9 mg of $N_2O$-N in the denitrification phase and 1.6 mg of $N_2O$-N in the nitrification phase, resulting in a total emission of 5.5mg from 432mg of $NH_4^+$-N input. In contrast, the SND-SBR emitted 26.2mg of $N_2O$-N under the microaerobic condition, which was about 5 times higher than the emission obtained with the CNV-SBR at the same $NH_4^+$-N input. From the $N_2O$ yield based on $NH_4^+$-N input, the microaerobic condition produced the highest yield (6.1%), followed by the anoxic (0.9%) and aerobic (0.4%) conditions. It is thought that an appropriate dissolved oxygen level is critical for reducing $N_2O$ emission during nitrification and denitrification at wastewater treatment plants.

Effect of Fuel Injection Timing on Nitrous Oxide Emission from Diesel Engine (디젤엔진에서 연료 분사시기가 아산화질소에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.106-112
    • /
    • 2014
  • The diesel engine, which has high compression ratio than other heat engines, has been using as the main power source of marine transport. Especially, since marine diesel engines offer better specific fuel consumption (SFC), it is environment-friendly compared to those used in other industries. However, attentio should be focused on emissions such as nitrous oxide ($N_2O$) which is generated from combustion of low-grade fuels. Because $N_2O$ in the atmosphere is very stable, the global warming potential (GWP) of $N_2O$ is 310 times as large as that of $CO_2$, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. It has been hitherto noted on the $N_2O$ exhaust characteristics from stationary power plants and land transportations, but reports on $N_2O$ emission from the marine diesel engine are very limited. In this experimental study, a author investigated $N_2O$ emission characteristics by using changed diesel fuel components of nitrogen and sulfur concentration, assessed on the factors which affect $N_2O$ generation in combustion. The experimental results showed that $N_2O$ emission exhibited increasement with increasing of sulfur concentration in fuel. However, all kinds of nitrogen component additives used in experiment could not change $N_2O$ emission.

Nitrogen removal, nitrous oxide emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes

  • Sun, Yuepeng;Xin, Liwei;Wu, Guangxue;Guan, Yuntao
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.107-116
    • /
    • 2019
  • Nitrogen removal, nitrous oxide ($N_2O$) emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes were investigated. Two sequencing batch reactors (SBRs) and two continuous-flow multiple anoxic and aerobic reactors (CMRs) were operated under high dissolved oxygen (DO) (SBR-H and CMR-H) and low DO (SBR-L and CMR-L) concentrations, respectively. Nitrogen removal was enhanced under CMR and low DO conditions (CMR-L). The highest total inorganic nitrogen removal efficiency of 91.5% was achieved. Higher nitrifying and denitrifying activities in SBRs were observed. CMRs possessed higher $N_2O$ emission factors during nitrification in the presence of organics, with the highest $N_2O$ emission factor of 60.7% in CMR-L. SBR and low DO conditions promoted $N_2O$ emission during denitrification. CMR systems had higher microbial diversity. Candidatus Accumulibacter, Nitrosomonadaceae and putative denitrifiers ($N_2O$ reducers and producers) were responsible for $N_2O$ emission.