DOI QR코드

DOI QR Code

컴퓨터 시뮬레이션을 이용한 MLE 공법 하수처리장에서 최저 아산화질소 발생 운전 조건 파악

Finding the operation conditions to minimize nitrous oxide emission from MLE configuration wastewater treatment plant using computer simulation program

  • 한지수 (경기대학교 대학원 환경에너지공학과) ;
  • 김민철 (서울물재생시설공단 물재생연구소) ;
  • 이병희 (경기대학교 사회에너지시스템공학과)
  • Jisoo Han (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Mincheol Kim (Water Regeneration Research Center, Seoul Water Recycling Corporation) ;
  • Byonghi Lee (Department of Civil & Energy System Engineering, Kyonggi University)
  • 투고 : 2023.04.14
  • 심사 : 2023.05.09
  • 발행 : 2023.06.30

초록

하수처리장에서 생물학적 질소 제거를 위한 질산화, 탈질 과정 중 6대 온실가스 중 하나인 아산화질소가 발생한다. 이번 연구에서는 온실가스 발생량을 정량할 수 있는 컴퓨터 시뮬레이션 프로그램인 EQPS를 이용해 합류식 하수를 처리하는 MLE 공법 하수처리장의 내부반송유량, 수온 그리고 유입수의 일차침전지 by-pass %에 따라 아산화질소가 가장 적게 발생하는 운전 조건을 찾았다. 내부반송 유량은 유입 유량의 200 %이고, 생물반응조 수온이 20 ℃이고 일차침전지에서 생물반응조로 by-pass 되는 유입수가 15 %일 때 아산화질소 배출 계수가 가장 적은 조건임을 확인했다. 또한 깊은 수심에서 공기를 주입하는 심층폭기는 상대적으로 적은 공기공급을 필요로 하기 때문에 일반적인 폭기조에 비해 적은량의 아산화질소가 발생함을 확인하였다.

Nitrous oxide, one of the six greenhouse gases from Kyoto protocol, is known to be emitted in biological nitrification and denitrification reactions at wastewater treatment plant. In this study, EQPS which is a computer program that can simulate nitrous oxide gas emission amount at wastewater treatment plants is used. The MLE process which treats wastewater from combined sewer is studied. Operational variables which are MLR, water temperature at reactor and primary clarifier by-pass percentage are changed to define the condition which produces the least amount of nitrous oxide gas. 200 % of MLR, 20 ℃ of water temperature at bioreactor and 15 % of primary clarifier by-pass percentage are shown the least nitrous oxide emission factor. Also, it is found that the deep aeration tank produces less amount of nitrous oxide gas since less air is required to meet oxygen demand in this type of aeration tank.

키워드

참고문헌

  1. IPCC, "Summary for Policymakers, In: Masson-Delmotte V. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge, United Kingdom & New York, NY, USA: Cambridge University Press, pp. 35~146. (2021).
  2. Armstrong, M. D., Staal, A., Abrams, J., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S., Rockstrom, J. and Lenton, T., "Exceeding 1.5℃ global warming could trigger multiple climate tipping points", Science, 377(6611), pp. 1~10. (2022). https://doi.org/10.1126/science.abn7950
  3. Presidential Commission on Carbon Neutrality and Green Growth, 2050 Carbon Neutrality of the Republic of Korea, https://2050cnc. go.kr/base/main/view (Access date:January 24, 2023)
  4. Korean Ministry of Environment, "National Sewage Service Master Plan", pp. 160~162. (2007).
  5. Korean Ministry of Environment, "Master Energy Independence Plan", p. 15. (2010).
  6. Korea Environment Institute, "A study on policy measures for Energy Independence of public sewage treatment facilities Final Report", Korean Ministry of Environment, pp. 3~7. (2019).
  7. Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. and Loosdrechta, M., "Nitrous oxide emission during wastewater treatment", Water Research, 43(17), pp. 4093~4103. (2009). https://doi.org/10.1016/j.watres.2009.03.001
  8. DONGHAE Engineering & Consultants co., Ltd., Korean Society of Water & Wastewater, Water Treatment Function Reinforcement and Facility Capacity Recalculation of Water Reuse Center Report, pp. 1-12,4-1,6-1~6-38. (2021).
  9. Lee, B., Choi, K. and Seo, S., "Performance Evaluation of SBR with Pre-Anoxic Tank According to Changing Time Steps Using EQPS - Organic Material and Total Nitrogen Removal", Journal of the Korean Society of Urban Environment, 19(3), pp. 189~196. (2019). https://doi.org/10.33768/ksue.2019.19.3.189
  10. Korean Ministry of Environment, "Statistics of Sewerage 2020", https://me.go.kr/home/web/policy_data/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10264&orgCd=&condition.toInpYmd=null&condition.code=A5&condition.fromInpYmd=null&condition.orderSeqId=6430&condition.rnSeq=110&condition.deleteYn=N&condition.deptNm=null&seq=7809 (Access date: January 24, 2023)
  11. Dynamita, biokinetic process models, https://wiki.dynamita.com/en/biokinetic_process_models (Access date: January 24, 2023)
  12. Pocquet, M., Wu, Z., Queinnec, I. and Sperandio, M., "A two pathway model for N2O emissions by ammonium oxidizing bacteria supported by the NO/N2O variation", Water Research, 88, pp. 948~959. (2016). https://doi.org/10.1016/j.watres.2015.11.029
  13. de Haas, D. and Ye. L., "Better Understanding Wastewater Treatment's Nitrous Oxide Emissions", Water e-Journal, 6(2), pp. 1~15. (2021). https://doi.org/10.21139/wej.2021.008
  14. Ahn, J., Kim, S., Park, H., Rahm, B., Pagilla, K. and Chandran, K., "N2O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States", Environmental Science & Technology, 44(12), pp. 4505~4511. (2010).
  15. Metcalf & Eddy, Wastewater Engineering: Treatment and Resource RecovoryI, 5th ed., McGraw Hill education, pp. 229~233. (2004).
  16. Ito, A., Nishina, K., Ishijima, K., Hashimoto, S. and Inatomi, M., "Emissions of nitrous oxide (N2O) from soil surfaces and their historical changes in East Asia: a model-based assessment", Progress in Earth and Planetary Science, 5(55), pp. 1~13. (2018).  https://doi.org/10.1186/s40645-017-0157-2
  17. Vanessa, P., Karl, S. and Jorg, K., "Greenhouse gas emissions from wastewater treatment plants", Energy Procedia, 97, pp. 246~254. (2016). https://doi.org/10.1016/j.egypro.2016.10.067
  18. David, D. H. and John, A., "Nitrous oxide emissions from wastewater treatment - Revisting the IPCC 2019 refinement guidelines", Environmental Challenges, 8, pp. 1~9. (2022). https://doi.org/10.1016/j.envc.2022.100557
  19. Jeffrey, F., David, D. H., Zhiguo, Y. and Paul, L., "Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants", Water Research, 44, pp. 831~844. (2010). https://doi.org/10.1016/j.watres.2009.10.033
  20. Jung, S. and Lee, B., "Evaluation of nBOD Occurrence at Influent and Effluent of Total Phosphorus Removal Processes", Journal of the Korean Society of Urban Environment, 21(2), pp. 65~73. (2021).  https://doi.org/10.33768/ksue.2021.21.2.065