• Title/Summary/Keyword: Nitrogen use efficiency

Search Result 299, Processing Time 0.03 seconds

유기질 비료의 종류 및 시비량이 마늘의 수량과 질소이용효율에 미치는 영향 (Response of Yield and Nitrogen Use Efficiency for Garlic on Different Types and Rates of Organic Fertilizer)

  • 김성헌;황현영;서혜빈;임재은;박성진;이윤혜;김명숙
    • 유기물자원화
    • /
    • 제27권4호
    • /
    • pp.35-42
    • /
    • 2019
  • 유기질 비료는 작물의 수량과 토양의 비옥도를 증진 시킬 수 있는 주요 농자재로 알려지면서, 유기질 비료의 적정 시비량 설정 연구에 대한 관심이 크게 증대되었다. 이에 본 연구는 유기질 비료의 종류 및 시비량을 달리하여 마늘을 재배한 후 마늘의 생육, 수량, 질소이용효율 및 토양의 화학적 특성 변화를 확인하고 이를 통해 유기질 비료의 적정 시비량을 제시하고자 수행되었다. 본 시험의 처리구는 무처리, NPK처리구(N-P2O5-K2O : 250-78-128 kg ha-1), 유기질 비료 처리구로 설정하였으며, 유기질 비료 처리구는 혼합유박(MEC), 혼합유기질(MOF), 유기복합(OCF)을 각각 질소시비량(250 kg ha-1)을 기준으로 50, 100 및 150%로 설정하여 시비하였다. 마늘의 생육은 혼합유박을 제외한 혼합유기질 및 유기복합비료 100% 처리구에서 NPK처리구와 유사한 경향을 보였으나 50% 및 150% 시비시 생육이 저하되는 것을 확인하였다. 마늘의 질소이용효율은 혼합유기질 및 유기복합비료의 100%처리구에서 각각 38.4% 및 38.0%로 NPK처리구(38.8%)와 가장 유사하게 나타났다. 마늘 수확 후 토양 특성으로 pH는 유기질 비료시비에 따라 낮아졌으나 NO3-N 및 NH4-N의 농도는 시비량이 증가함에 따라 높아지는 경향이었다. 치환성 양이온, Av.P2O5, OM의 함량은 처리구에 따른 유의적인 차이는 없었다. 위의 결과를 통해 마늘 재배 시 혼합유기질 및 유기복합처리구 100% 시비가 가장 효과적이라고 판단되어지나 과다 및 장기 시비에 대한 추가 연구가 필요할 것으로 판단된다.

채종유박(菜種油粕) 수비시용(穗肥施用)이 벼의 질소이용효율(窒素利用效率)과 수량(收量)에 미치는 영향(影響) (Effects of Rapeseed Cake Application at Panicle Initiation Stage on Rice Yield and N-use Efficiency in Machine Transplanting Cultivation)

  • 강승원;유철현;양창휴;한상수
    • 한국토양비료학회지
    • /
    • 제35권5호
    • /
    • pp.272-279
    • /
    • 2002
  • 환경보전형 시비기술 개발을 목적으로 화학비료의 사용을 절감하는 한편 화학비표를 유기질비료로 대체 사용하는 방법을 구명코자 호남평야지 대표 토양인 전북통에서 2년간('99~'00) 동안벼를 공시하여 어린모 기계이앙으로 재배하였고 시비방법으로 관행(표준시비), 완효성비료(LCU) 40%를 전량기비 후 수비로 출수 30일전에 채종유박시용량을 10, 30, 50%시용구와 질소무시용구 등 5처리 하여 수행한 시험결과는 다음과 같다. 공시된 채종유박의 질소 무기화율은 72.4%였으며 전질소함량은 5.3%였다. 시험후 토양의 화학성은 관행에 비하여 유박시용구에서 pH, 유기물함량 등이 증가되었으나 칼리와 고토함량은 일정한 경향이 없었다. 시비질소의 토양중 $NH_4-N$ 발현량은 이앙 후 18일까지는 LCU시용구 보다 관행구에서 높았으나 최고분얼기 이후부터 상반되었고 출수기에는 수비유박 대체량이 많을수록 높아 졌다. 수량은 관행에 비하여 완효성비료 (LCU)40% 기비 시용후 유박시용량이 증가할수록 증수하였는데 유박을 수비로 30%시용시 2%, 50%시용시 4% 증수되었으며, 증수요인은 $m^2$당 립수의 증가에 있었다. 한편 시비질소 흡수량은 관행에 비하여 수비유박의 시용량이 증가 할수록 많았으나 질소이용율은 수비로 유박을 50%시용한 처리보다 30%시용한 처리에서 높게 나타났다. 따라서 관행의 수비요소를 유박으로 30%까지 대체할 경우 비료 절감측면이나 질소 이용효율 면에서 유리할 것으로 판단되었다.

Effect of Mixed Treatment of Urea Fertilizer and Zeolite on Nitrous Oxide and Ammonia Emission in Upland Soil

  • Park, Jun-Hong;Park, Sang-Jo;Seo, Young-Jin;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.368-373
    • /
    • 2014
  • Ammonia loss from urea significantly hinders efficient use of urea in agriculture. The level of nitrous oxide ($N_2O$) a long-lived greenhouse gas in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. There are reports in the literature showing that the addition of zeolite to N sources can improve the nitrogen use efficiency. This study was conducted to evaluate nitrous oxide ($N_2O$) and ammonia ($NH_3$) emission by mixed treatment of urea and zeolite in upland crop field. Urea fertilizer and zeolite were applied at different rates to study their effect on $N_2O$ emission during red pepper cultivation in upland soils. The $N_2O$ gas was collected by static closed chamber method and measured by gas chromatography. Ammonia concentration was analyzed by closed-dynamic air flow system method. The total $N_2O$ flux increased in proportion to the level of N application. Emission of $N_2O$ from the field increased from the plots applied with urea-zeolite mixture compared to urea alone. But urea-zeolite mixture treatment reduced about 30% of $NH_3$-N volatilization amounts. These results showed that the application of urea and zeolite mixture had a positive influence on reduction of $NH_3$ volatilization, but led to the increase in $N_2O$ emission in upland soils.

토양 정화 방법에 따른 토양의 물리화학적 특성 변화 (Changes in the Physicochemical Properties of Soil According to Soil Remediation Methods)

  • 이용민;오참뜻;김국진;이철효;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권4호
    • /
    • pp.36-43
    • /
    • 2012
  • Various methods are used to remediate soil contaminated with heavy metals or petroleum. In recent years, harsh physical and chemical remediation methods are being used to increase remediation efficiency, however, such processes could affect soil properties and degrade the ecological functions of the soil. Effects of soil washing, thermal desorption, and land farming, which are the most frequently used remediation methods, on the physicochemical properties of remediated soil were investigated in this study. For soils smaller than 2 mm, the soil texture were changed from sandy clay loam to sandy loam because of the decrease in the clay content after soil washing, and from loamy sand to sandy loam because of the decrease in the sand content and increase in silt content during thermal desorption, however, the soil texture remained unchanged after land farming process. The water-holding capacity, organic matter content, and total nitrogen concentration of the tested soil decreased after soil washing. A change in soil color and an increase in the available phosphate concentration were observed after thermal desorption. Exchangeable cations, total nitrogen, and available phosphate concentration were found to decrease after land farming; these components were probably used by microorganisms during as well as after the land farming process because microbial processes remain active even after land farming. A study of these changes can provide information useful for the reuse of remediated soil. However, it is insufficient to assess only soil physicochemical properties from the viewpoint of the reuse of remediated soil. Potential risks and ecological functions of remediated soil should also be considered to realize sustainable soil use.

유기자원 연용이 유기농 옥수수 밭토양의 화학성과 옥수수 수량에 미치는 영향 (The Effect of Organic Materials Application on Soil Chemical Properties and Yield of Corn in Organic Upland Soil)

  • 공민재;안필균;정정아;이초롱;이상민;안난희
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1239-1248
    • /
    • 2020
  • This study performed to conduct a test to increase the amount of appropriate organic matter input to organic upland soil, soil fertility, and its effect on the chemical changes and yield of corn in soil due to organic use. The pH level of the T1, T5, and T6 treatment zones where livestock excreta was used was raised to 6.0-6.5, the optimal range of the soil in Korea, and it was confirmed that the pH value was appropriate. Electrical Conductivity (EC), organic content (OM), and total nitrogen (T-N) were also identified as a trend of continuous increase. The quantity of corn gradually increased from 74.1% to 96.4% over the four-year period with the use of organic materials compared to the beginning of the test, and the utilization efficiency of nitrogen has also increased. The results of the study were found to have been able to examine the increase in quantity and changes in soil chemistry through crop cultivation using organic materials such as natural materials, green manure crops, and livestock manure compost, and it is also believed that the changes due to various factors such as soil environment, soil microbes, and climate conditions need to be made through continuous research.

Bench-scale 선박용 STP 장치에서 C : N : P 비율에 따른 인의 처리효율 비교에 대한 연구 (A Study on the Comparison of Phosphorous Removal Efficiency with C : N : P Ratio for Bench-scales STP)

  • 최영익;지현조;신대열;사나 만수르;이승철;정진희
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.53-59
    • /
    • 2018
  • Water pollution is drastically increasing day by day, because of the enhancement in use of livestock, urban sewage detergents and fertilizers. Moreover increase in concentration of phosphorous and nitrogen contained in sewage, leads to green tide problem in the rivers and causes marine pollution. For this problem to solve, several technologies are being researched and developed. Among them, this experiment is a study on Bench-scale STP based on internationally certified sewage treatment equipment by MEPC. 227(64) of IMO. The purpose of this study is to compare the biological treatment efficiency of phosphorus of Bench-scale STP. The ratio of C : N : P was set to 10 : 5 : 3 and 10 : 3 : 1 as the operating conditions. And the operation cycle was set to anoxic(mixed) 70 min - aeration 50 min (70-50), anoxic(mixed) 90 min - aeration 60 min (90-60). As a result, the phosphorous treatment efficiency was 88% at average, and the treatment efficiency was steady at 90-60 better than 70-50. The efficiency of the bench-scale STP has been verified through this experiment and additional experiments are required to derive the optimal operating conditions.

질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구 (A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor)

  • 동영탁;서동환;배유진;박주석
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Fertilization of N and Si to Sustain Grain Yield and Growth Characteristics of Rice after Winter Greenhouse Water-melon Cropping

  • Cho, Young-Son;Jeon, Weon-Tae;Park, Chang-Young;Park, Ki-Do;Kang, Ui-Gum;Muthukumarasamy, Ramachandran
    • 한국작물학회지
    • /
    • 제51권6호
    • /
    • pp.505-512
    • /
    • 2006
  • In Korea, silicate fertilization (SF) is being practiced every four years to enhance rice production. However, the relationship between nitrogen (N) and SF in view of growth characteristics and grain yield of rice has not been examined after watermelon cropping in plastic film house. This study was carried out to identify useful critical N and Si fertilizer levels to sustain grain yield and to improve N use efficiency for rice. The watermelon-rice cropping system has maintained for three seasons in each year from 1998 to 2001 by farmer before this experiment. Experiments on N and Si fertilization levels were evaluated with Hwayoungbyeo (Oryza sativa L.) in 2002 and 2003 at Uiryeong, Korea. The goal of this experiment was to find out the optimum N and Si levels to sustain rice yield by reducing excessive N fertilizer in watermelon-rice cropping system. Nitrogen fertilization (NF) levels were three ($0,\;57,\;114kg\;ha^{-1};0,\;50,\;100%$ of conventional NF amount) and five (0, 25, 50, 75, 100%) in 2002 and 2003, respectively, and combined with three SF levels ($70,\;130,\;180mg\;kg^{-1};100,\;150,\;200%$ which were adjusted with Si fertilizer in soil) were evaluated for the improvement of N and Si fertilization level in both years. Rice yielded 3.98-5.95 and 2.84-4.02 t/ha in 2002 and 2003, respectively. Our results showed the combinations of 50% and 100% of N with 200% level of Si produced the highest grain yield in both years, respectably. The grain yield was greatly improved in plot of N25% level when compared to conventional NF (Nl00%) in 2003. In conclusion, NF amount could be reduced about 50% compared to recommended level by specific fertilization of N and Si combination levels for rice growing and grain yield after cultivation watermelon in paddy field.

Ultrafiltration을 이용한 Gouda Cheese의 제조 (Manufacture of Gouda Cheese from the Concentrated Milk by the Use of Ultrafiltration)

  • 이용림;김상필;박희경;허태련
    • 한국미생물·생명공학회지
    • /
    • 제22권1호
    • /
    • pp.99-105
    • /
    • 1994
  • In this study we compared traditional cheesemaking process with the process utilizing ultrafiltration(UF) system. The whole milk retentates were prepared by ultrafiltration to volume concentration ratio(VCR) of 2.00:1, 2.25:1 and 2.50:1. Along with the untreated whole milk, there were studies in terms of the change of pH, titratable acidity and Soxhlet-Henkel($\circ $SH) value by mesophilic lactic starter and curd formation by rennet during Gouda cheese manufacture. Due to the increase of buffering effect titratable acidity and $\circ $SH value increased with the higher concentration ratio. When inoculated with the same volume of mesophilic lactic starter, less pH change occurred in UF retentates than in control milk. When added 0.0025% rennet, UF retentates coagulated 16~ 17 minutes ealier then the control milk. Gouda cheese yield from raw milk and UF retentates was 12.5~13.1% equally, but yield efficiency of UF retentate cheese was slightly higher than that of the raw milk cheese. Quantity of whey from retentate cheese was inversely related to VCR. But whey from retentate cheese contained higher percentage of amjor components than that from control milk cheese. In early ripening, the concentrations of lactose and soluble nitrogen compound were higher in retentate cheeses. Lactose content of control milk cheese was 3.49% and that of 2.00:1. 2.25:1, 2.50:1 VCR retentate was 3.77%, 4.89%, 7.03%, respectively. Thus, the more concentrated cheese contained a higher amount of lactose and all the lactose was hyerolyzed durion 35-day ripenion period. Soluble nitrogen compound of control milk cheese was 1.22% and that of UF cheeses was 1.82~2.06%. After 20-day ripening, soluble nitrogen compound increased starply in UF cheese.

  • PDF

수도의 질소반응에 미치는 고$CO_2$농도 및 온도의 영향 (Effect of Elevated TEX>$CO_2$ and Temperature on Nitrogen Responses in Rice)

  • 김한용
    • 한국자원식물학회지
    • /
    • 제11권2호
    • /
    • pp.119-123
    • /
    • 1998
  • Effects of elevated CO2 and temperature on nitrogen (N) uptake , leaf N concentration, N partitioning , N use efficiency (NUE) and grain yield of pot and field grown rice (Oryza sativa. L.cv. Chukwangbyeo) under canopy-like conditions were studied over three years. Rice plants were grown in pots and in the field in temperature gradient chambers containing either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in conbination with either four or seven temperature regimes ranging form ambient temperature(AT) to AT plus 3$^{\circ}C$. There were three N supplies 94g or 6g m-2 to 20g or 48g m-2.Elevated CO2 increased N uptake in field-grown rice ; the magnitude of this effect was thelargest (+15%) at the highest N level. However, in pot-grown rice, N uptake was suppressed with the effect was the largest at high N levels. Leaf N concentration declined at elevated CO2 mainly due to a decrease in N partitiioning to the leaf blades. Air temperature had little effect on the N parameters mentioned previously, wherease NUE for spikelet production declined rapidly with increased temperature irrespective of CO2 concentration. The response of the biomass to elevated CO2 varied with N level, with the greatest response at 20g N m-2 (+30%) . At AT, where high temperature-induced sterility was generally not observed, elevated CO2 increased yield. However, the magnitude of this effect varied greatly (2-39%) with N level, and was mainly dependent on the magnitude of the increase in spikelet number.

  • PDF