• 제목/요약/키워드: Nitrogen transformation

검색결과 98건 처리시간 0.034초

Comparison of nitrogen transformation dynamics in non-irradiated and irradiated alfalfa and red clover during ensiling

  • Dong, Zhihao;Li, Junfeng;Chen, Lei;Yuan, Xianjun;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권10호
    • /
    • pp.1521-1527
    • /
    • 2019
  • Objective: To study the contribution of plant enzyme and microbial activities on protein degradation in silage, this study evaluated the nitrogen transformation dynamics during ensiling of non- and irradiated alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.). Methods: Alfalfa and red clover silages were prepared and equally divided into two groups. One group was exposed to ${\gamma}$-irradiation at a recommended dosage (25 Gky). Therefore, four types of silages were produced: i) non-irradiated alfalfa silage; ii) irradiated alfalfa silage; iii) non-irradiated red clover silage; and iv) irradiated red clover silage. These silages were opened for fermentation quality and nitrogen components analyses after 1, 4, 8, and 30 days, respectively. Results: The ${\gamma}$-irradiation successfully suppressed microbial activity, indicated by high pH and no apparent increases in fermentation end products in irradiated silages. All nitrogen components, except for peptide-N, increased throughout the ensiling process. Proteolysis less occurred in red clover silages compared with alfalfa silages, indicated by smaller (p<0.05) increment in peptide-N and free amino acid N (FAA-N) during early stage of ensiling. The ${\gamma}$-irradiation treatment increased (p<0.05) peptide-N and FAA-N in alfalfa silage at day 1, whereas not in red clover silage; these two nitrogen components were higher (p<0.05) between day 4 and day 30 in non-irradiated silages than the irradiated silages. The ammonia nitrogen and non-protein nitrogen were highest in non-irradiated alfalfa silage and lowest in irradiated red clover silage after ensiling. Conclusion: The result of this study indicate that red clover and alfalfa are two forages varying in their nitrogen transformation patterns, especially during early stages of ensiling. Microbial activity plays a certain role in the proteolysis and seems little affected by the presence of polyphenol oxidase in red clover compared with alfalfaa.

고온 가스질화 된 STS 430 스테인리스강의 냉간 가공성에 미치는 항온변태 열처리 시간 변화의 영향 (Effect of Isothermal Transformation Heat-treatment Time on Cold Workability of STS 430 Stainless Steel after High Temperature Gas Nitriding)

  • 김정민;현양기;송상우;김기동;손영호;성장현
    • 열처리공학회지
    • /
    • 제27권1호
    • /
    • pp.15-22
    • /
    • 2014
  • This study is to investigate the phase changes and cold workability after isothermal transformation at $780^{\circ}C$ by using the high temperature gas nitrided (HTGN) STS 430 ferritic stainless steel specimens. The phase diagram of STS 430 steel obtained by calculation showed that the phase appeared at $1100^{\circ}C$ showed as ${\alpha}+{\gamma}{\rightarrow}{\gamma}{\rightarrow}{\gamma}+Cr_2N{\rightarrow}{\gamma}+Cr_2N+CrN$ with increasing nitrogen concentration. Also, the transformation of ${\gamma}{\rightarrow}Cr_2N$ during heat treatment isothermally at $780^{\circ}C$, nitrogen pearlite with lamellar type was fully formed at the nitrogen permated surface layer for 10 hrs. However, this transformation was not completed for 1 hr, resulting nitrogen pearlite plus martensite. The cold rolled specimen of isothermally transformed at $780^{\circ}C$ for 10 hrs after high temperature gas nitriding decreased the layer thickness of nitrogen pearlite inducing the deformation of hard $Cr_2N$ phase. the dissolution rate of $Cr_2N$ phase increased rapidly with increasing cold rolling ratio. Specimens with the microstructure of nitrogen pearlite (isothermally transformed at $780^{\circ}C$ for 10 hrs) were possible to cold rolling without crack formation. However, the mixed structures of nitrogen pearlite + martensite (isothermally transformed at $780^{\circ}C$ for 1 hr) were impossible to cold deformation without cracking.

논 토양(土壤)에서 볏짚시용시(施用時) 시용질소(施用窒素)의 유기화(有機化)에 관(關)한 연구(硏究) (Effects of Rice Straw Application on the Immobilization of Applied Nitrogen in a Submerged Soil)

  • 이상규
    • 한국토양비료학회지
    • /
    • 제16권4호
    • /
    • pp.368-371
    • /
    • 1983
  • 논 토양(土壤)에서 볏짚시용량(施用量)을 달리했을 때 시용(施用)된 질소비료(窒素肥料)의 무기(無機) 및 유기화(有機化) 과정(過程)을 알기 위하여 실내(室內)에서 항온(恒溫) 시험(試驗)한 결과(結科)를 요약(要約)하면 다음과 같다. 1. 토양미생물(土壤微生物) 이용가능(利用可能) 탄소원(炭素源)이 풍부(豊富)한 볏짚시용시(施用時) 시용질소(施用窒素)의 유기화(有機化) 과정(過程)은 볏짚시용량(施用量)이 많을 수록 질소(窒素) 유기화(有機化) 속도(速度)가 빨랐음. 2. 볏짚시용시(施用時) 시용질소(施用窒素)의 90%이상(以上)이 항온(恒溫)20일경(日傾) 유기화(有機化) 되었음. 3. 시용질소(施用窒素)의 무기화량(無機化量)은 볏짚시용량(施用量)에 관계(關係)없이 항온(恒溫) 10일이후(日以後) 토양무기태(土壤無機態) 질소(窒素)까지 유기화(有機化)시켰음. 4. 볏짚시용시(施用時) 시용(施用)된 질소(窒素)는 항온(恒溫) 50일(日)까지 재(再) 무기화(無機化)되지 않했음.

  • PDF

The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella

  • Liang, Fang;Du, Kui;Wen, Xiaobin;Luo, Liming;Geng, Yahong;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2116-2124
    • /
    • 2015
  • To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m2/s; temperature: 30℃ pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R2 = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

오스테나이트 스테인리스강의 극저온 특성 (An Extremely Low Temperature Properties of Austenite Stainless Steels)

  • 정찬회;김순국;이준희;정세진;김익수
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen and deformation-induced martensitic transformation on the behavior of austenite stainless steels used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing of immersion time in the liquid nitrogen, the tensile strength of all austenite stainless steels at cryogenic temperature was increased because the martensite transformation of unstable austenite. The restraint of crack generation ana transmission also increased the tensile strength by the active ${\alpha}'$ transformation. The elongation decreasing of 321 steel is not the mechanical deformation of austenite phase but the stress induced martensite phase during the tensile test.

Optimal condition for efficient DNA transfer in filamentous cyanobacteria by electroporation

  • Poo, Ha-Ryoung
    • Journal of Microbiology
    • /
    • 제35권3호
    • /
    • pp.181-187
    • /
    • 1997
  • Filamentous cyanobacteria are an ecologically important group of bacteria because they are able to provide both organic carbon fixed nitrogen that can support the nutritional requirements for other microorganisms. Because of their prokaryotic nature, they can also be used as potentially powerful model systems for the analysis of oxygenic photosynthesis and nitrogen fixation. Gene transfer is an indispensable procedure for genetic analysis of filamentous cyanobacteria. Electroporation was used to introduce foreign DNA into cyanobacterial cells. In experiments designed to optimize the electroporation technique, the effects of the field strength (amplitude of pulse) and time constant (duration of pulse), DNA concentration and host restriction/modification of DNA on the efficiency of electro-transformation were investigated. The results of this research revelaed that a high voltage pulse of short duration was effective for the electro-transformation of Anabaene sp. M131. The maximal number of transformants was obtained at 6 kV/cm with a pulse duration of 5 msec. The efficiency of electro-transformation was also sensitive to concenetration of DNA; even small amounts of DNA (0.01 .mu.g/ml) were able to gie a large number of transformants (1.0 * 10$\^$3/ cfu/ml).

  • PDF

전기화학적 반응을 이용한 질산성 질소의 암모니아성 질소로 전환 (Transformation of Nitrogen in the Form of Nitrate into Ammonia by Electrochemical Reaction)

  • 이재광;김도연;탁용석
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.1013-1016
    • /
    • 2008
  • 본 연구에서는 폐수 내 존재하는 질산성 질소를 제거하기 위해 캐소드물질로 철(Fe), 구리(Cu), 니켈(Ni), 아연(Zn)을 선택하여 전기화학적 환원반응 특성을 조사하였다. $NO_3^-$로부터 $NH_3$로의 변환반응에 있어서 Zn이 가장 우수한 촉매 특성을 가지고있으며, pH 8.5에서 가장 높은 질산성 질소 제거 효율을 나타내었다. 전극표면에서 질산성 질소는 아질산성 질소로 환원된 후, 암모니아성 질소로 전환되는 것을 확인하였으며 암모니아성 질소는 HOCl과의 화학반응을 통하여 질소 형태로 완전히 제거할 수 있었다.

A Mathematical Model Development for the Nitrification-Denitrification Coupled Process

  • 이미선;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.430-433
    • /
    • 2003
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code describing the fate and transport of nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed and tested. The proposed nitrogen transformations and transport model showed very good match with the results of other public codes.

  • PDF

간척지 토양환경 조건별 토양내 질소 동태와 영향 요소 (Fate of Nitrogen Influenced by Circumstances of a Reclaimed Tidal Soils)

  • 한상균;김혜진;송진아;정덕영
    • 한국토양비료학회지
    • /
    • 제44권5호
    • /
    • pp.745-751
    • /
    • 2011
  • In most agricultural soils, ammonium ($NH_4^+$) from fertilizer is quickly converted to nitrate ($NO_3^-$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. However, nitrification studies have been studied extensively in agricultural soils, not in a newly reclaimed tidal soil which show saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea introduced into reclaimed tidal soil is important for nutrient management and environmental quality. This paper reviewed studies regarding to transformation and fate of nitrogen sources such as urea under the circumstances of a reclaimed tidal soils located in a western coastal area.

우분퇴비 시용후 토양수분 조절에 따른 질소 및 탄소의 전환 (Mineralization of Cattle Manure Compost at Various Soil Moisture Content)

  • 김필주;정덕영;장기운;이병렬
    • 한국환경농학회지
    • /
    • 제16권4호
    • /
    • pp.295-303
    • /
    • 1997
  • 수분조건(${\theta}$m 0.2, 0.3, 0.4, 0.5) 변화에 따른 토양내 우분퇴비의 질소와 탄소의 전환특성을 조사하기 위해 7월말에서 11월 초 사이 15주간 실내에서 Incubation 실험을 실시하였다. 실험기간동안에 토양 pH는 질산화 과정중 발생되는 수소의 영향으로 낮은 폭으로 지속적인 감소를 보였으며, 유기물과 수분처리량이 증가할수록 암모니아 질소의 발생률의 증대와 환원물질의 생성으로 토양 pH가 높아졌다. 전 질소의 감소율은 수분량이 증가할수록 증가하는 경향을 보였으나, 전 탄소는 이와 반대의 경향을 보였다. 따라서 낮은 수분조건(${\theta}$m 0.2)에서 C/N율은 시험기간동안 지속적으로 감소되어 지력이 증진됨을 볼 수 있었으나, ${\theta}$m 0.4 이상의 높은 수분조건에서는 지속적인 C/N율 증가가 발생되어 지력 감소와 토양 pH 감소 원인으로 작용하였다. 우분처리에 따른 $NO_3\;^--N$ 발생량은 ${\theta}$m 0.3 이하의 수분조건에서는 비교적 양호한 통기조건 때문에 지속적으로 증가되었으나, ${\theta}$m 0.4 이상의 조건에서는 초기에 큰 폭의 감소가 발생되었으며, 특히 ${\theta}$m 0.5에서는 2∼3주 이후 $NO_3\;^--N$가 발생되지 않았다. 그러나 $NH_4\;^+-N$의 발생량은 위와 반대경향을 보여, 수분함량이 증가함에 따라 발생량이 증대되는 경향을 보였다. 전 질소에 대한 무기태 질소의 비율로 나타낸 질소의 무기화율은 낮은 수분조건에서는 꾸준히 증가하였으나, 높은 수분조건에서는 초기 큰 폭의 감소가 발생된 후 서서히 증가되는 경향을 보였다. 이상의 결과를 종합할 때, 토양내 유기물 시용시 지력 유지 측면에서 토양내 수분조건은 대단히 중요하며, 높은 수분조건에서는 질소 손실량 증대에 의한 지력 감소가 발생될 것으로 예측되었다.${\theta}$ m 0.2 정도의 적정 수분조건에서는 양호한 통기성과 수분유지로 인한 질소 손실을 줄일 수 있었다.

  • PDF