• Title/Summary/Keyword: Nitrogen sources

Search Result 1,300, Processing Time 0.029 seconds

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF

Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran (파이롯트 규모에서 미강을 이용한 해양미생물 Cellulophaga lytica LBH-14 유래의 cellobiase 생산)

  • Cao, Wa;Kim, Hung-Woo;Li, Jianhong;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.542-553
    • /
    • 2013
  • The aim of this work was to establish the optimal conditions for the production of cellobiase by a marine bacterium, Cellulophaga lytica LBH-14, using response-surface methodology (RSM). The optimal conditions of rice bran, ammonium chloride, and the initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for the production of cellobiase were 91.1 g/l, 9.02 g/l, and 6.6, respectively. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}_{7H2}O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for the production of cellobiase were 4.46, 0.36, 0.27, and 0.73 g/l, respectively. The optimal temperatures for cell growth and for the production of cellobiase by C. lytica LBH-14 were 35 and $25^{\circ}C$, respectively. The maximal production of cellobiase in a 100 L bioreactor under optimized conditions in this study was 92.3 U/ml, which was 5.4 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of cellobiase by C. lytica LBH-14. The time for the production of cellobiase by the marine bacterium with submerged fermentations was reduced from 7 to 3 days, which resulted in enhanced productivity of cellobiase and a decrease in its production cost. This study found that the optimal conditions for the production of cellobiase were different from those of CMCase by C. lytica LBH-14.

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

Study on the Relationship between Utilization of Nutrients in the Rumen and Rumen Microorganisms by Dietary Energy and Protein Source (에너지와 단백질(蛋白質) 공급원(供給源)에 의(依)한 반추위내(反芻胃內) 영양소(營養素) 이용성(利用性) 및 반추위미생물(反芻胃微生物)에 관(關)한 연구(硏究))

  • Chee, Sul Ha;Lee, Sang Cheol;Jeong, Ha Yeon
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.188-205
    • /
    • 1996
  • This study was conducted to examine the effects of dietary energy and protein sources on the rumen microbial population of sheep. The results obtained were summarized as the follows; 1. Ruminal pH was highest in sheep fed the diet rapidly degraded in the rumen(F-F) as a energy (barley plus beet pulp) and protein source (rapeseed meal), and lowest in the diet (F-S) of rapidly degradable energy source plus slowly degradable protein source (corn gluten meal + cotton seed meal) without affecting by postfeeding time. 2. Ruminal ammonia concentration was higher in corn (slowly degradable) for energy source and rapeseed meal (rapidly degradable) for protein source (S-F) than others, and abruptly increased at 1 hr after feeding regardless of treatments. 3. Concentration of ruminal total volatile fatty acid, acetate and propionate were highest in F-S and peaked at 1 hr after feeding firstly and formed second peak at 9hrs, respectively. 4. Digestibilities of the proximates and ADF were not affected by treatment but NDF was highest in F- F. 5. Nitrogen retention was highest in S-F and lowest in F-F and F-S. 6. Digestibility and metabolizability of energy, contents of OCP, TDN, DE and ME were not affected by treatment.

  • PDF

Study on the Dry Matter Yield and Chemical Composition of Wildflower Pasture (야생화 도입 초지의 건물수량 및 품질에 관한 연구)

  • 김득수;이인덕;이형석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • The purpose of this study was to suggest the possibility of utilizing the wildflower pasture as the livestock herbage sources as well as promoting the public interests. Not only dry matter (DM) yield and soil properties of pastures were observed, but also chemical composition of herbages was analyzed. The experimental design includes four treatments: Conventional pasture(COP, forage 6 species), Bottomgrass pasture(BOP, turf grass 6 species), Native wildflower pasture(NWP, turf grass 6 species + native wildflower 11 species) and Introduced wildflower pasture(IWP, turf grass 6 species + introduced wildflower 9 species). The field trials were carried out on the experimental pasture plots at Chungnam National University throughout from 1997 to 2000. The results obtained are as follows : 1. As wildflower pasture was composed of turf grasses and wildflowers, the yearly mean of DM yield in the wildflower pastures (NWP 6,688kg/ha and IWP 7,240kg/ha) was lower than that of COP(8,592kg/ha) or BOP(7,264kg/ha)(p<0.05). This result indicated that the forage productivity of wildflower pasture for livestock is low. 2. The nutritive quality of herbages from wildflower pasture tended to be slightly low compared to that of COP and BOP. On the other hand, compared with IWP, the content of CP, NDF and lignin of herbages from NWP were lower than those from IWP, while IVDMD was higher(p<0.05). 3. The pH and the content of exchangeable Ca in NWP and IWP soils were tended to be low compared to those of COP in changes of soil properties after 3-years experimental trials, while the contents of organic matter, nitrogen, available phosphate, Mg and K were slightly improved. In conclusion, even though DM yield seem to be lower in wildflower pasture than those of COP, and the nutritive quality of herbages from wildflower pasture tended to be slightly low compared to that of COP and BOP. but, possibility of utilizing herbages from wildflower pasture for livestock was to some extent expected. In addition. compared to COP, wildflower pastures improved the property of soil. Thus, although wildflower pasture was not enough for livestock as a herbage, wildflower pasture has enough possibility for promoting the public interest.

  • PDF

Production Medium Optimization for Monascus Biomass Containing High Content of Monacolin-K by Using Soybean Flour Substrates (기능성 원료를 기질로 이용하는 Monacolin-K 고함유 모나스커스 균주의 생산배지 최적화)

  • Lee, Sun-Kyu;Chun, Gie-Taek;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.463-469
    • /
    • 2008
  • During the last decade, monacolin-K biosynthesized by fermentation of red yeast rice (Monascus strains) was proved to have an efficient cholesterol lowering capability, leading to rapid increase in the market demand for the functional red yeast rice. In this study, the production medium composition and components were optimized on a shake flask scale for monacolin-K production by Monascus pilosus (KCCM 60160). The effect of three different soybean flours on the monacolin-K production were studied in order to replace the nitrogen sources of basic production medium (yeast extract, malt extract and beef extract). Among the several experiments, the production medium with dietary soybean flour to replace a half of yeast extract was very good for monacolin-K production. Plackett-Burman experimental design was used to determine the key factors which are critical to produce the biological products in the fermentation. According to the result of Plackett-Burman experimental design, a second order response surface design was applied using yeast extract, beef extract and $(NH_4)_2SO_4$ as factors. Applying this model, the optimum concentration of the three variables was obtained. The maximum monacolin-K production (369.6 mg/L) predicted by model agrees well with the experimental value (418 mg/L) obtained from the experimental verification at the optimal medium. The yield of monacolin-K was increased by 67% as compared to that obtained with basic production medium in shake flasks.

Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique (SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출)

  • Sola, Ana Belen Cueva;Jeon, Jong-Hyuk;Lee, Jin-Young;Parhi, Pankaj Kumar;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2020
  • Selective catalytic reduction (SCR) has been a promising technology to reduce the air pollution caused by nitrogen oxides (NOx) in several industries. The consumption of SCR catalysts increases every year as technology evolves, however those have a limited lifespan and usually end up in landfills after they deactivate. Currently, the most widely used catalyst for and stationary applications is V2O5-WO3/TiO2 which can contain around 50% wt V2O5 and 7-10% wt of WO3. The vast uses for both vanadium and tungsten and the worldwide interest in recycling methods that allow for the extraction of metals from secondary sources represent the major motivation for this research. The extraction time, pH dependency, extraction concentration studies were carried out using Aliquat 336 in exxol D80 as the extractant. It was determined that to optimize the extraction of both metals 30min of contact time with an organic phase containing 0.5mol/L of Aliquat 336 are needed at a slightly acidic pH (~5.0). In addition, counter McCabe-Thiele studies allowed us to determine that one stage is necessary for the removal of 99% of vanadium while 2 stages are necessary for the extraction of tungsten and counter current simulations proved that the theoretical approach was correct.

Isolation and Morphological Identification of Fresh Water Green Algae from Organic Farming Habitats in Korea (유기농업 생태계로부터 담수 녹조류 분리 및 형태적 동정)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Yun, Jong-Chul;Kim, Suk-Chul
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.743-760
    • /
    • 2014
  • This study aimed to isolate and identify freshwater algae from the organic agricultural ecosystems and investigate its biological characteristics to study the possibility of utilizing a biomass freshwater algae in organic farming. In the survey area, average water temperature was $12.4{\sim}28.2^{\circ}C$ and the pH ranges were from 6.1 to 8.5. The solid culture method is more suitable than liquid culture method for isolation of freshwater algae with lower contamination level and higher isolation frequency. A total of 115 strains were isolated from six freshwater algae habitats in nine regions in Korea. BGMM (BG11 Modified Medium) amended with NaNO3 and $KNO_3$ as a nitrogen, and $Na_2CO_3$ as carbon source was designed to isolate and culture freshwater algae. Absorbance of freshwater algae culture has increased dramatically to four days and decreased after eight days after inoculation. CHK008 of the seven isolates showed the highest absorbance in seven days after culturing in BGMM. The optimal pH of BGMM for culturing freshwater algae was pH 6-7. As light intensity increased, growth of freshwater algae increased. Among the five kinds of carbon sources, glucose and galactose promoted good growth of freshwater algae in BGMM. The colony color of purified 16 green algae isolates showed a separation of green, dark and light green, and of them, eleven algae strains showed a strong fluorescent light under fluorescence microscopy. Cell size of the green algae showed a wide range of variation depending on the species. General morphology of the green algae strains was spherical. Chlamydomonas sp. was elliptical, and Chlorella sorokiniana was ellipsoidal and cylindrical. All strains of the green algae except for Chlamydomonas sp. did not have flagella. One isolate of Chlamydomonas sp. and five isolates of C. sorokiniana secreted mucus. Sixteen isolates of 16 green algae were identified as two family and six species, Chlorella vulgalis, C. sorokiniana, C. pyrenoidosa, C. kessleri, C. emersonii, and Chlamydomonas sp. based on their morphological characteristics.

Food Quality Characterization and Safety of Imported Fish Roe (Japanese flyingfish roe, Capelin roe and Pacific herring roe) (수입 어란(날치 알, 열빙어 알 및 청어 알)의 품질 특성과 안전성)

  • Lee, Jong-Soo;Kim, Jin-Soo;Kim, Jeong-Gyun;Oh, Kwang-Soo;Choi, Byeong-Dae;Park, Kwon Hyun;Choi, Jong-Duck
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.95-108
    • /
    • 2011
  • The food quality characterization and safety Japanese flying fish roe (JFF-R), capelin roe (C-R), Pacific herring roe (PH-R) were investigated. The size of JFF-R was 1.48-1.93 mm, which was longer than those of C-R and PH-R. The moisture content of JFF-R imported from Peru (JFF-R-P) was 70.3%, which was higher than that of JFF-R imported from China (JFF-R-C) (67.4%), while was lower than that of JFF-R imported from Indonesia (JFF-R-I) (83.3%). However, the salinity of JFF-R-P was 13.6%, which was lower than that of JFF-R-C, while was higher that of JFF-R-I (1.8%). The moisture contents and salinities of the other fish roes were 80.4% and 3.2%, respectively, for capalin roe, and 65.4% and 20.0%, respectively, for Pacific herring roe. According to the results of pH, volatile basic nitrogen content, heavy metal content, viable cell count and coliform group, the fish roes could be used as sanitary sources for preparation of seasoned JFF-R. The major fatty acids of fish roes were 16:0 (27.8-30.5%), 18:1n-9 (7.2-8.0%), 20:5n-3 (5.6-8.2%) and 22:6n-3 (22.0-25.6%) in JFF-R, and 16:1n-7 (6.7-9.3%) as well as these fatty acids in C-R and PH-R. Total amino acid contents of fish roes ranged from 9.44 g/100 g to 10.39 g/100 g and their major amino acids were aspartic acid, glutamic acid, leucine and lysine. The mineral content of JFF-R were higher than those of the other fish roes expected for zinc of JFF-R-I. According to the results of sensory evaluation, the color and texture of JFF-R-P were superior to those of the other fish roes. No difference was, however, found in flavor, among JFF-R-P and the other fish roes.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF