Browse > Article
http://dx.doi.org/10.11625/KJOA.2014.22.4.743

Isolation and Morphological Identification of Fresh Water Green Algae from Organic Farming Habitats in Korea  

Kim, Min-Jeong (농촌진흥청 국립농업과학원 유기농업과)
Shim, Chang-Ki (농촌진흥청 국립농업과학원 유기농업과)
Kim, Yong-Ki (농촌진흥청 국립농업과학원 유기농업과)
Hong, Sung-Jun (농촌진흥청 국립농업과학원 유기농업과)
Park, Jong-Ho (농촌진흥청 국립농업과학원 유기농업과)
Han, Eun-Jung (농촌진흥청 국립농업과학원 유기농업과)
Jee, Hyeong-Jin (농촌진흥청 국립농업과학원 유기농업과)
Yun, Jong-Chul (농촌진흥청 국립농업과학원 기획조정과)
Kim, Suk-Chul (농촌진흥청 국립농업과학원 유기농업과)
Publication Information
Korean Journal of Organic Agriculture / v.22, no.4, 2014 , pp. 743-760 More about this Journal
Abstract
This study aimed to isolate and identify freshwater algae from the organic agricultural ecosystems and investigate its biological characteristics to study the possibility of utilizing a biomass freshwater algae in organic farming. In the survey area, average water temperature was $12.4{\sim}28.2^{\circ}C$ and the pH ranges were from 6.1 to 8.5. The solid culture method is more suitable than liquid culture method for isolation of freshwater algae with lower contamination level and higher isolation frequency. A total of 115 strains were isolated from six freshwater algae habitats in nine regions in Korea. BGMM (BG11 Modified Medium) amended with NaNO3 and $KNO_3$ as a nitrogen, and $Na_2CO_3$ as carbon source was designed to isolate and culture freshwater algae. Absorbance of freshwater algae culture has increased dramatically to four days and decreased after eight days after inoculation. CHK008 of the seven isolates showed the highest absorbance in seven days after culturing in BGMM. The optimal pH of BGMM for culturing freshwater algae was pH 6-7. As light intensity increased, growth of freshwater algae increased. Among the five kinds of carbon sources, glucose and galactose promoted good growth of freshwater algae in BGMM. The colony color of purified 16 green algae isolates showed a separation of green, dark and light green, and of them, eleven algae strains showed a strong fluorescent light under fluorescence microscopy. Cell size of the green algae showed a wide range of variation depending on the species. General morphology of the green algae strains was spherical. Chlamydomonas sp. was elliptical, and Chlorella sorokiniana was ellipsoidal and cylindrical. All strains of the green algae except for Chlamydomonas sp. did not have flagella. One isolate of Chlamydomonas sp. and five isolates of C. sorokiniana secreted mucus. Sixteen isolates of 16 green algae were identified as two family and six species, Chlorella vulgalis, C. sorokiniana, C. pyrenoidosa, C. kessleri, C. emersonii, and Chlamydomonas sp. based on their morphological characteristics.
Keywords
freshwater; green algae; culture; organic farming habitats;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aksu, Z., U. Acikel, and T. Kutsal. 1999. Investigation of simultaneous biosorption of copper (II) and chromum (VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms. Sep. Sci. Technol. 34: 501-524.   DOI
2 Allen, M. B. 1966. Studies on the properties of some blue-green algae. Ph. D. Dissertation, University of California, Berkeley.
3 Anderson, R. A. 2005. Algal Culturing Techniques. Burlington: Elsevier Academic Press. p.
4 Benson A. A. 2002. Following the path of carbon in photosynthesis: A personal story. Photosynth. Res. 73: 29-49.   DOI
5 Cha, J. Y., J. W. Kim, B. K. Park, H. J. Jin, S. Y. Kim, and Y. S. Cho. 2008. Isolation and identification of Chlorella sp. CMS-1 and the chemical composition of its hot water extract. J. of Life Science 18: 1723-1727.   DOI
6 Cho, I. S. 2004. Industrial applications and production of Chlorella. Kor. J. Microbiol. 30: 42-49.
7 Faheed, F. A. and Z. Abd-El Fattah. 2008. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. of Agri. & Soc. Sci. 4: 165-169.
8 Fott, B. and M. Novakova, 1969. A Monograph of the Genus Chlorella. In: The Freshwater Species, Studies in Phycology, Fott, B. (Ed.). Academia, Praha, pp. 10-74.
9 Gabriel, B. 1996. Wastewater Microbiology, John Wiley & Son, N.Y. pp. 68-75.
10 Geoghegan, M. J. 1951. Unicellular algae as a source of food. Nature 168: 426-427.   DOI
11 Green, B. R. 2011. After the primary endosymbiosys: an update on the chromalveolate hypothesis and the origins of algae with chl c. Photosynth. Res. 107: 103-115.   DOI
12 Guiry, M. D. and Guiry, G. M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 2014.
13 Hernandez, J. P., L. E. De-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan. 2009. Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing plant growth-promoting bacterium Bacillus pumilus from arid zone soils. European J. Soil Biol., 45: 88-93   DOI
14 Hiroto, N., M. Tadahiko, and K. Shozo. 1996. Effects of the hot water extract and its residues of Chlorella cells on the growth of radish seedlings and changes in soil microflora. Jpn. J. Soil Sci. Plant Nutr. 67: 17-23.
15 Hoxteman, E. 2007. A comment on Werburg's early understanding of biocatalysis. Photosynth. Res. 92: 121-127.   DOI
16 Huang, B., H. Hong, and L. Chen. 1994. The physiological effects of different N-P ratios on algae in semicontinuous culture. Asian Mar. Biol. 11: 137-142.
17 Huss, V. R., C. Frank, E. C. Hartmann, M. Hirmer, A. Kloboucek, B. M. Seidel, P. Wenzeler, and E. Kessler. 1999. Biochemical taxonomy and molecular phylogeny of the genus Chlorella Sensu Lato (Chlorophyta). J. Phycol. 35: 587-598.   DOI
18 Ichimi, K., S. Meksumpum, and S. Montani. 2003. Effects of light intensity on the cyst germination of Chattonella sp. (Raphidophyeae), Plankton Biology and Ecology 50: 22-24.
19 Jeon, S. M., I. H. Kim, J. M. Ha, and J. H. Lee. 2008. Overview of technology for fization of carbon dioxide using microalgae. J. Korean Ind. Eng. Chem. 19: 145-150.
20 Jeanfils, J., M. F. Canisius, and N. Burlion. 1993. Effect of nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. J. Appl. Phycol. 5: 369-374.   DOI
21 Jin, H. J. 2008. Optimization of media composition and culture conditions for the growth of Chlorella sp. CMS-1. Master degree thesis of Dong-A University, Busan, Korea.
22 Kanetsuna, Y. 2002. New and interesting desmids (Zygnematales, Chlorophyeae) collected from asia. Phyco. Res. 50: 101-103.   DOI   ScienceOn
23 Kang, M. S., S. J. Sim, and H. J. Chae. 2004. Chlorella as a functional biomaterial. Korean J. Biotechnol. Bioeng. 19: 1-11.
24 Karakashian, S. J. and Karakashian M. W. 1965. Evolution and symbiosis in the genus Chlorella and related algae. Evolution 19: 368-377.   DOI
25 Karin, N. 2009. The construction of a scientific model: Otto Warburg and the building block strategy. Studies in History and Philosophy of Biological and Biomedical Science 40: 73-86.   DOI
26 Kazumasa, H., Y. Sayaka, D. Susilangsih, I. Osamu, M. Aparat, P. Jirapatch, and Y. Kazuhisa. 2003. Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J. Biosci. Bioeng. 95: 512-517.   DOI
27 Krauss, R. W. 1962. Mass culture of algae for food and other organic compounds. American J. Botany 49: 425-435.   DOI   ScienceOn
28 Lee, T. Y., B. R. Choi, J. K. Lee, and J. H. Lim. 2011. Cultivation of Chlorella sp. using light emitting diode. Kor. J. Envi. Eng. 33: 591-597.
29 Lee, Y. N. and C. S. Lee. 1970. Studies on nucleic acid and protein biosynthesis of Chlorella cells during the course of the chloroplast development. Korean J. Microbiol. 8: 1-12.
30 Lin C. S., T. L. Chou, and J. T. Wu. 2013. Biodiversity of soil algae in the farmlands of mid-Taiwan. Botanical Studies 54: 1-12.   DOI
31 Mahmoud, M. S. 2001. Nutritional status and growth of maize plants as affected by green microalgae as soil additives. J. Biol. Sci., 1: 475-479.   DOI
32 Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiseal production and other applications: A review. Renewable Sustainable Energy 14: 217-232.   DOI   ScienceOn
33 Metting, B. and J. W. Pyne. 1986. Biologically active compounds from microalgae. Enzyme Microbial Technol. 8: 386-394.   DOI   ScienceOn
34 Oh-Hama T. and S. Miyachi. 1998. Chlorella, pp. 3-26. In: Borowitzka M. A. and L. J. Borowotzka (eds). Microalgal Biotechnology. Cambridge University Press, Cambridge.
35 Ordog, V., W. A. Stirk, J. Van Staden, O. Novak, and M. Strand. 2004. Endogenous cytokinins in three genera of microalgae from Chlorophyta. J. Phycol., 40: 88-95   DOI
36 Raposo, M. F. D. J. and R. M. S. C. De. Morais. 2011. Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with rhizobacteria. Int. J. Agric. Biol., 13: 719-724.
37 Rhichmond, A. 1990. Large scale microalgal culture and applications, In: Phycology Research for 1990. Proc. Phycology Research Conference 1990, pp.1-62.
38 Rippka, R., J. B. Deruells, M. Herdman, and R. Y. Stanier. 1979. Assignments strain history and properties of pure culture of Cyanobacteria. J. General. Micro. 111: 1-61.   DOI
39 Sheehan, J., V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri. 1998. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus, Final report NREL/ SR-580-24089, National Renewable Energy Laboratory, Golden, Colorado. (www.nrel.gov/docs/legosti/fy98/24089.pdf)
40 Shihira, I. and R. W. Krauss, 1965. Chlorella Physiology and Taxonomy of Forty-one Isolates. University of Maryland, College Park, Maryland, pp. 1-92.
41 Tamiya, H., T. Iwamura, K. Shibata, E. Hase, and T. Nihei. 1953. Correlation between phytosynthesis and light-independent metabolism in the growth of Chlorella. Biochem. Biophy. Acta. 12: 23-40.   DOI   ScienceOn
42 Stanier R. Y., R. Kunisawa, M. Mandel, and G. Cohen-Bazire. 1971. Purification and properties of multi-cellular blue-green algae (order Chlorococcales). Bacteriol. Rev. 35: 171-205.
43 Stirk, W. A., V. Ordog, J. Van Staden, and K. Jager. 2002. Cytokinin-and auxin-like activity in Cyanophyta and microalgae. J. Appl. Phycol., 14: 215-221.   DOI
44 Takeda, H. 1991. Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). J. Phycol. 27: 224-232.   DOI
45 Thompson, A. S., J. C. Rhodes, and I. Pettman. 1988. National environmental Research Council. Culture and Collection of Algae and Protozoa. Titus Wilson and Sons LTD. Kendal, UK, pp. 13-35.
46 US DOE(Department of Energy). 2010. National Algal Biofuels Technology Rodmap. http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf.
47 Vonshak. A. 1986. Laboratory techniques for the culturing of microalgae. In: Richmond, A. (ed). Handbook of Microalgal Mass Culture, p. 117. CRC Press, Boca Raton, Florida.
48 Warburg, O. 1919. Uber die geschindigkeit der kohlensaurezersetzung in lebenden Zellen. Biochem. Z. 100: 230-270.
49 Wu, H. L., R. S. Hseu, and L. P. Lin. 2001. Identification of Chlorella spp. isolates using ribosomal DNA sequences. Bot. Bull. Acad. Sin. 42: 115-121.
50 Zallen, D. T. 1993. Redrawing the boundaries of molecular biology: The case of photosynthesis. J. of the History of Biology 26: 65-87.   DOI