References
- Adbel-Fattah, A. F., Osman, M. Y. and Abdel-Naby, M. A. 1997. Production and immobilization of cellobiase from Aspergillus niger A20. Chem Eng J 68, 189-196. https://doi.org/10.1016/S1385-8947(97)00082-X
- Beguin, P. and Aubert, J. P. 1994. The biological degradation of cellulose. FEMS Microbiol Rev 13, 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
- Blumer-Schuette, S. E., Kataeva, I., Westpheling, J., M. Adams, M. W. W. and Kelly, R. M. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
- Carfagna, S., Vona, W., Martino, V. D., Esposito, S. and Rigano, C. 2011. Nitrogen assimilation and cysteine biosynthesis in barley: evidence for root sulphur assimilation upon recovery from N deprivation. Environ Exp Botany 71, 18-24. https://doi.org/10.1016/j.envexpbot.2010.10.008
- Chen, M., Xia, L. and Xue, P. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Bioderad 59, 85-89. https://doi.org/10.1016/j.ibiod.2006.07.011
- Chen, M., Zhao, J. and Xia, L. 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71, 411-415. https://doi.org/10.1016/j.carbpol.2007.06.011
- Emtiazi, G. and Nahvi, I. 2000. Multi-enzyme production by Cellomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37. https://doi.org/10.1016/S0961-9534(00)00015-5
-
Emtiazi, G. and Nahvi, I. 2004. Production of thermostable
${\alpha}$ -amylase and cellulase from Cellulomonas sp. J Microbiol Biotechnol 14, 1196-1199. - Ge, L., Wang, P. and Mou, H. 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36, 84-89. https://doi.org/10.1016/j.renene.2010.06.001
- Gao, W., Lee, E. J., Lee, S. U., Li, J. and Lee, J. W. 2012. Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophaga lytica LBH-14, using rice bran. J Microbiol Biotechnol 22, 1415-1425. https://doi.org/10.4014/jmb.1203.03009
- de Groot, M. J., van Vondervoort, P. J., de Vries, R. P., Vankuyk, P. A., Ruijter, G. J. and Visser, J. 2003 Isolation and characterization of two specific regulatory Aspergillus niger mutants show antagonistic regulation of arabinan and xylan metabolism. Microbiol 149, 1183-1191. https://doi.org/10.1099/mic.0.25993-0
- Jaleel, C. A., Manivannan, P, Lakshmanan, G. M. A., Sridharan, R. and Panneerselvam, R. 2007. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Compt Rend Biol 330, 806-813. https://doi.org/10.1016/j.crvi.2007.08.009
- Jin, I. H., Jung, D. Y., Son, C. W., Kim, S. K., Gao, W., Chung, C. H. and Lee, J. W. 2011. Enhanced production of heteropolysaccharide-7 by Beijerinkia indica HS-2001 in repeated batch culture with optimized substitution of culture medium. Biotechnol Bioprocess Eng 16, 245-255. https://doi.org/10.1007/s12257-010-0120-1
- Jo, K. I., Lee, Y. J., Kim, B. K., Lee, B. H, Chung, C. H., Nam, S. W., Kim, S. K. and Lee, J. W. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol Bioprocess Eng 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
- Kim, B. K., Lee, B. H., Lee, Y. J., Jin, I. H., Chung, C. H. and Lee, J. W. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
- Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Statistical optimization for production of carboxymethylcellulase from rice hulls by a newly isolated marine microorganism Bacillus licheniformis LBH-52 using response surface method. J Life Sci 21, 1083-1093. https://doi.org/10.5352/JLS.2011.21.8.1083
- Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Statistical optimization for production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 from rice bran using an orthogonal array method. Biotechnol Bioprocess Eng 16, 542-548. https://doi.org/10.1007/s12257-010-0457-5
- Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical method. Korean J Chem Eng 29, 384-391. https://doi.org/10.1007/s11814-011-0192-4
- Kim, Y. J., Gao, W., Lee, S. U. and Lee, J. W. 2012. Enhanced production of carboxymethylcellulase by a newly isolated marine microorganism Bacillus atrophaeus LBH-18 using rice bran, a byproduct from the rice processing industry. J Life Sci 22, 1295-1306. https://doi.org/10.5352/JLS.2012.22.10.1295
-
Kulakova, L., Galkin, A, Nakayama, T, Nishino, T. and Esaki, N. 2004. Cold-active estrase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly
${\rightarrow}$ Pro substitution near the active site on its catalytic activity and stability. Biochem Biophy Acta 1696, 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008 - Latifian, M., Hamidi-Esfahani, Z. and Barzegar, M. 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol 98, 3634-3637. https://doi.org/10.1016/j.biortech.2006.11.019
- Lee, B. H., Kim, B. K., Lee, Y. J, Chung, C. H. and Lee, J. W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
- Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I, Lee, N. K., Chung, C. H., Lee, Y. C. and Lee, J. W. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99, 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
- Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Comparison of statistical methods for optimization of salts in the medium for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J Life Sci 21, 1205-1213. https://doi.org/10.5352/JLS.2011.21.9.1205
- Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol Bioprocess Eng 17, 227-235. https://doi.org/10.1007/s12257-011-0258-5
- Liming, X. and Xueling, S. 2004. High-yield cellulose production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91, 259-262. https://doi.org/10.1016/S0960-8524(03)00195-0
- Rajoka, M. I., Akhtar, M. W., Hanif, A. and Khalid, A. M. 2006. Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J Microbiol Biotechnol 22, 991-998. https://doi.org/10.1007/s11274-006-9146-0
- Rasmussnen, R. S. and Morrissey, M. T. 2007. Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52, 237-292. https://doi.org/10.1016/S1043-4526(06)52005-4
- Ryu, D. D. Y. and Mandels, M. 1980. Cellulase: biosynthesis and applications. Enzyme Microb Technol 2, 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
- Saratale, G. F., Saratale, R. G. and Oh, S. E. 2012. Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47, 302-315. https://doi.org/10.1016/j.biombioe.2012.09.030
- Senthikumar, S. R., Ashokkumar, A., Raj, K. C. and Cunasekraran, P. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour Technol 96, 1380-1386. https://doi.org/10.1016/j.biortech.2004.11.005
- Shen, X. and Xia, L. 2004. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91, 259-262. https://doi.org/10.1016/S0960-8524(03)00195-0
- Sukumaran, R. K., Singhania, R. R., Mathew, G. M. and Pandey, A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008
Cited by
- Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1
- Overexpression and characterization of a novel α-neoagarobiose hydrolase and its application in the production of D-galactonate from Gelidium amansii 2017, https://doi.org/10.1016/j.procbio.2017.08.014
- Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6
- Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3