• Title/Summary/Keyword: Nitrogen plasma treatment

Search Result 187, Processing Time 0.028 seconds

Properties of Spin-On-Glass Siloxane Thin Films Fluorine-doped by CF$_4$ Plasma (CF$_4$ 플라즈마 처리로 불소를 첨가한 실록산 Spin-On-Glass 박막의 특성)

  • 김현중;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2001
  • Siloxane thin films were fabricated on a silicon wafer by spin-coating using a siloxane solution made by the sol-gel process. Fluorine was doped using$ CF_4$ plasma treatment. The film was then annealed in-situ state in the nitrogen atmosphere. In order to examine the influence of annealing and fluorine doping on the siloxane thin film, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used and the dielectric constant was determined by the high-frequency capacitance-voltage method. Stable siloxane films could be obtained by in-situ annealing in a nitrogen atmosphere after $CF_4$ plasma treatment, and the dielectric value of the film was $\varepsilon$ 2.5.

  • PDF

RF Plasma Nitriding of AISI 304 Stainless Steel

  • Kim, Sun-Kyu;Yoo, Jung-Sik;Matthew P. Fewell
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • Austenitic stainless steel AISI 304 was nitrided in a low-pressure RF plasma using pure nitrogen. With a treatment of time of 4.0h at $400^{\circ}C$, the nitrogen-rich layer on the sample was $3\mu\textrm{m}$thick and had a hardness of approximately 4.4 times higher than that of untreated material. XRD data showed that as the process temperature rose from 350∼$450^{\circ}C$, the expanded austenite peaks became more prominent while the austenite peaks became weaker. Expanded austenite was transformed to ferrite and CrN at the treatment of$ 500^{\circ}C$. Langmuir probe measurements showed that electron density decreased above $450^{\circ}C$.

Adhesion Enhancement of Polymer Material Using Atmospheric Plasma (III) (대기압 플라즈마를 이용한 고분자 소재의 접착력 향상 (III))

  • Sim, Dong Hyun;Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • An atmospheric plasma pre-treatment method was applied to EVA foam, Leather (Action), Rubber and Unwoven to improve its contact angle and adhesion using atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas (nitrogen), rate of gas flow (30~100 mL/min), and reaction time (0~30 sec) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM. Due to a decrease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of 10 second for an atmosphere nitrogen gas. Consequently, the atmospheric plasma treatment reduced the contact angle of the EVA foam, Leather (Action) and Rubber also resulted in the improvement of the adhesion.

  • PDF

The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron (플라즈마 침질탄화처리된 순철의 화합물층 특성)

  • Cho, H.S.;Lee, S.Y.;Bell, T.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF

The Optimum Methionine to Methionine Plus Cystine Ratio for Growing Pigs Determined Using Plasma Urea Nitrogen and Nitrogen Balance

  • Qiao, Shiyan;Piao, Xiangshu;Feng, Zhanyu;Ding, Yuhua;Yue, Longyao;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.434-442
    • /
    • 2008
  • The objective of this study was to determine the optimum ratio of methionine to methionine plus cystine for growing pigs. A nitrogen balance trial was conducted using a total of 21 barrows (Large WhiteLandrace) over two replicates. The initial body weight was $20.36{\pm}1.22kg$ (mean${\pm}$SD) in the first replicate and $23.54{\pm}1.02kg$ (mean${\pm}$SD) in the second. For each replicate, the 21 pigs were randomly assigned to one of seven dietary treatments with three observations per treatment. The diets included a methionine and cystine-deficient basal diet with all other essential nutrients meeting nutrient requirements and six diets formulated with graded levels of DL-methionine (0.00, 0.03, 0.06, 0.10, 0.13, 0.16%) and $L-Cystine{\cdot}HCl{\cdot}H_2O$ (0.19, 0.15, 0.11, 0.07, 0.04, 0.00%). This resulted in ratios of methionine to methionine plus cystine of 41.3, 29.6, 35.3, 41.2, 46.0, 51.6 and 57.5%. Each experimental period lasted 12 days consisting of a seven-day adaptation period followed by a five-day total collection of urine and feces. During the collection period, pigs were fed 900 g/day for the first replicate and 1,200 g/day for the second replicate. The feed was provided in three equal portions at 0800, 1500, and 2200 h daily. Pigs had ad libitum access to water after feeding. There was a linear (p<0.01) and quadratic (p<0.01) effect on daily gain and feed conversion as the ratio of methionine to methionine plus cystine increased. Pigs receiving the diets providing a methionine to methionine plus cystine ratio of 51.6% had the best daily gain and feed conversion. Plasma urea nitrogen was also lowest for this treatment. Nitrogen retention increased (p<0.01) as the relative proportion of methionine increased up to 51.6% and then a downward trend occurred at 57.5%. The quadratic regression model, as well as one- and two- slope regression line models, were used to determine the optimum ratio of methionine to methionine plus cystine. Eliminating the 35.3% methionine to methionine plus cystine treatment resulted in $R^2$ values in excess of 0.92. The optimal ratio of methionine to methionine plus cystine was estimated to be 54.15% for nitrogen retention and 56.72% for plasma urea nitrogen.

Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided (플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구)

  • Cho, H.S.;Roh, Y.S.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF

Effects of HgCl2 on plasma DNA content and blood biochemical values in rats (랫드에서 수은이 혈장 DNA와 혈액화학치에 미치는 영향)

  • Cho, Joon-Hyoung;Jeong, Sang-Hee;Kang, Hwan-Goo;Yun, Hyo-In
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.641-648
    • /
    • 2003
  • Changes of plasma DNA contents and serum biochemical values were measured in rats administered with $HgCl_2$ to investigate the in vivo cytotoxic effects of mercury and examine the usefulness of these changes as indicators of mercury exposure and diagnosis of mercury poisoning. Rats were given once intraperitonealy $HgCl_2$(0.13. 0.32. 0.8 and 2 mg/kg b.w) and the changes of plasma DNA contents and serum biochemical values were measured at the time of 2, 4, 8, 24, 48 and 72 hours after the administration of $HgCl_2$. Plasma DNA contents began to increase from 2 hours after the administration of $HgCl_2$ in all the treatment groups significantly compared to control with dose-dependent pattern. The levels of plasma DNA reached to peak at 48 hours as 2.77, 7.60, 15.46 and 16.51 times higher than control in each treatment group of 0.13, 0.32, 0.8 and 2 mg/kgb.w, respectively and remained to be higher until 72 hours after the administration. The values of creatine kinase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, blood urea nitrogen and glucose of serum were increased, however the values of alkaline phosphatase, total protein and triglyceride were decreased. These changes of increase and decrease showed dose-dependent pattern but the starting time, maintenance and magnitude of change were various and characteristic according to serum biochemical indices. Among the changes of serum biochemical values, those of aspartate aminotransferase, lactate dehydrogenase and blood urea nitrogen were apparently and significantly increased compared to control from 2 to 72 hours by the administration of 2 mg/kg $HgCl_2$. This study demonstrates that plasma DNA and serum biochemical values such as aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen and etc. are valuable as biomarkers for mercury exposure assessment and diagnosis of mercury poisoning.

Study on the $N_2$ Plasma Treatment of Nanostructured $TiO_2$ Film to Improve the Performance of Dye-sensitized Solar Cell

  • Jo, Seul-Ki;Roh, Ji-Hyung;Lee, Kyung-Joo;Song, Sang-Woo;Park, Jae-Ho;Shin, Ju-Hong;Yer, In-Hyung;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.337-337
    • /
    • 2012
  • Dye sensitized solar cell (DSSC) having high efficiency with low cost was first reported by Gr$\ddot{a}$tzel et al. Many DSSC research groups attempt to enhance energy conversion efficiency by modifying the dye, electrolyte, Pt-coated electrode, and $TiO_2$ films. However, there are still some problems against realization of high-sensitivity DSSC such as the recombination of injected electrons in conduction band and the limited adsorption of dye on $TiO_2$ surface. The surface of $TiO_2$ is very important for improving hydrophilic property and dye adsorption on its surface. In this paper, we report a very efficient method to improve the efficiency and stability of DSSC with nano-structured $TiO_2$. Atmospheric plasma system was utilized for nitrogen plasma treatment on nano-structured $TiO_2$ film. We confirmed that the efficiency of DSSC was significantly dependent on plasma power. Relative in the $TiO_2$ surface change and characteristics after plasma was investigated by various analysis methods. The structure of $TiO_2$ films was examined by X-ray diffraction (XRD). The morphology of $TiO_2$ films was observed using a field emission scanning electron microscope (FE-SEM). The surface elemental composition was determined using X-ray photoelectron spectroscopy (XPS). Each of plasma power differently affected conversion efficiency of DSSC with plasma-treated $TiO_2$ compared to untreated DSSC under AM 1.5 G spectral illumination of $100mWcm^{-2}$.

  • PDF

Effects of Hydrogen Plasma Treatment of the Underlying TaSiN Film Surface on the Copper Nucleation in Copper MOCVD

  • Park, Hyun-Ah;Lim, Jong-Min;Lee, Chong-Mu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.435-438
    • /
    • 2004
  • MOCVD is one of the major deposition techniques for Cu thin films and Ta-Si-N is one of promising barrier metal candidates for Cu with high thermal stability. Effects of hydrogen plasma pretreatment of the underlying Ta-Si-N film surface on the Cu nucleation in Cu MOCVD were investigated using scanning electron microscopy, X-ray photoelectron spectroscopy and Auger electron emission spectrometry analyses. Cu nucleation in MOCVD is enhanced as the rf-power and the plasma exposure time are increased in the hydrogen plasma pretreatment. The optimal plasma treatment process condition is the rf-power of 40 Wand the plasma exposure time of 2 min. The hydrogen gas flow rate in the hydrogen plasma pretreatment process does not affect Cu nucleation much. The mechanism through which Cu nucleation is enhanced by the hydrogen plasma pretreatment of the Ta-Si-N film surface is that the nitrogen and oxygen atoms at the Ta-Si-N film surface are effectively removed by the plasma treatment. Consequently the chemical composition was changed from Ta-Si-N(O) into Ta-Si at the Ta-Si-N film surface, which is favorable for Cu nucleation.

A Study on the Measurement of Vibrational and Rotational Temperature Using the Atmospheric Ar Plasma Torch (대기압 아르곤 플라즈마 토치의 진동 및 회전온도 측정 연구)

  • Choi, Kwang-Ju;Jang, Mun-Gug;Han, Sang-Bo;Park, Jae-Youn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1895-1902
    • /
    • 2011
  • This work was carried out for the measurement of vibration and rotation temperature using the optical emission spectroscopy of nitrogen second positive system in the small plasma torch. Among emissions $N_2$ SP systems, the emission of $N_2$ SP(0-0) was so strong. Emission peaks of SP system increased until the position of 12.5[mm] from the end of plasma torch, after that it decreased. However, vibration temperature decreased from 1540[K] to 1000[K] at the position of 12.5[mm]. In addition, rotational temperature was about 400[K] at the position of 10[mm] and it increased a little as much of 420[K] at 12.5[mm]. Consequently, the plasma torch discussed in this work is possible to apply in the surface treatment process under the low temperature.