• 제목/요약/키워드: Nitrogen oxides ($NO_X$)

검색결과 107건 처리시간 0.024초

직접분사식 가솔린 엔진의 연소제어인자에 따른 희박연소 특성 연구 (A Study on the Lean Combustion Characteristics with Variation of Combustion Parameter in a Gasoline Direct Injection Engine)

  • 박철웅;오진우;김홍석
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.39-45
    • /
    • 2012
  • Today gasoline engines for vehicular application are not only faced with stringent emission regulation but also with increasing requirements to better fuel economy, while guaranteeing power density. The spray-guided type gasoline direct injection (GDI) engine has an advantage of improved thermal efficiency and lower harmful emissions. Centrally mounted high pressure injector and adjacent spark plug allow stable lean combustion due to the flexible mixture stratification. In the present study, the performance and emissions characteristics of developed spray-guided type GDI combustion system were evaluated at various excess air ratio conditions. The specific fuel consumption and nitrogen oxides ($NO_x$) emissions were reduced due to the achievement of stable lean combustion under flammability limit. Multiple injection strategy was not helpful to improve fuel consumption while further reduction of $NO_x$ emissions was possible.

바이오디젤 연료 압축착화 엔진의 당량비 변화가 연소 및 배출물특성에 미치는 영향 (Effect of Equivalence Ratio on the Combustion Characteristics in a CI Engine Fueled with Biodiesel)

  • 강민구;권석주;차준표;임영관;박성욱;이창식
    • 한국연소학회지
    • /
    • 제16권3호
    • /
    • pp.52-58
    • /
    • 2011
  • The purpose of this paper is to investigate the effect of equivalence ratio on the combustion and emission characteristics of a compression ignition engine fueled with biodiesel. In this research, a single-cylinder direct injection engine with 373.3 cc of displacement volume was tested on DC dynamometer. In order to investigate the effect of biodiesel equivalence ratio on combustion characteristics, the experiments were conducted at various equivalence ratios and injection pressures of 40~120 MPa. For investigating engine performance, lambda meter was connected and equivalence ratios was varied from 0.6 to 1.0. In addition, the exhaust emissions such as oxides of nitrogen($NO_X$), hydrocarbon(HC) and carbon monoxide(CO) were measured by exhaust gas analyzer under the various air/fuel ratios. The experimental results show that maximum IMEP was measured at the 0.8 of equivalence ratio. Furthermore, $NO_X$ emission was rapidly decreased as the increase of equivalence ratio. However soot emission was significantly increased according to the increase of equivalence ratio.

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim
    • 한국재료학회지
    • /
    • 제33권5호
    • /
    • pp.195-204
    • /
    • 2023
  • Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • 한국재료학회지
    • /
    • 제34권5호
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

석탄과 슬러지의 예혼합연소에 따른 산성가스 배출특성 (Characteristics of Acidic Gas Emissions from Combustion with Preblending of Coal and Sludge)

  • 심성훈;정상현;민효기;이상섭
    • 대한환경공학회지
    • /
    • 제36권2호
    • /
    • pp.103-108
    • /
    • 2014
  • 하수슬러지의 해양투기 규제에 따른 처리대안으로 석탄화력발전소 보조연료로서의 활용이 제안되고 있다. 슬러지를 석탄과 혼합하여 사용한다면 연료의 조성변화로 인하여 산성가스의 배출특성이 달라질 것으로 예상된다. 본 연구에서는 국내 하수처리장 7곳에서 발생한 하수슬러지를 수거하여 석탄과 혼합한 뒤 실험실 규모의 연소로에서 연소시킨 후 배출되는 질소산화물($NO_x$), 이산화황($SO_2$), 염화수소(HCl), 염소($Cl_2$) 가스를 분석하였다. $NO_x$는 슬러지 혼합에 따른 배출농도 변화가 가장 작았고, $SO_2$는 슬러지를 혼합하여 연소하였을 때 석탄 연소가스와 비교하여 높은 배출농도 증가를 보였다. HCl + $Cl_2$는 슬러지의 염소함량에 따라 서로 다른 배출농도를 보였다.

HDDM과 BFM을 이용한 NOx와 VOC 배출량에 대한 오존민감도계수 산정 및 결과 비교: 2007년 6월 수도권 사례 (Estimating Ozone Sensitivity Coefficients to NOx and VOC Emissions Using BFM and HDDM for A 2007 June Episode)

  • 김순태
    • 한국환경과학회지
    • /
    • 제20권11호
    • /
    • pp.1465-1481
    • /
    • 2011
  • The accuracy of ozone sensitivity coefficients estimated with HDDM (High-order Decoupled Direct Method) can vary depending on the $NO_x$ (Nitrogen Oxides) and VOC (Volatile Organic Compound) conditions. In order to evaluate the applicability of HDDM over the Seoul Metropolitan Area (SMA) during a high ozone episode in 2007 June, we compare BFM (Brute Force Method) and HDDM in terms of the $1^{st}$-order ozone sensitivity coefficient to explain ozone change in response to changes in NOx and VOC emissions, and the $2^{nd}$-order ozone sensitivity coefficient to represent nonlinear response of ozone to the emission changes. BFM and HDDM estimate comparable ozone sensitivity coefficients, exhibiting similar spatial and temporal variations over the SMAduring the episode. NME (Normalized Mean Error) between BFM and HDDM for the episode average $1^{st}$- and $2^{nd}$-order ozone sensitivity coefficients to NOx and VOC emissions are less than 3% and 9%, respectively. For the daily comparison, NME for the $1^{st}$- and $2^{nd}$-order ozone sensitivity coefficients are less than 4% ($R^2$ > 0.96) and 15% ($R^2$ > 0.90), respectively. Under the emission conditions used in this study, two methods show negative episode average $1^{st}$-order ozone sensitivity coefficient to $NO_x$ emissions over the core SMA. The $2^{nd}$-order ozone sensitivity coefficient to $NO_x$ emissions leads ozone to respond muchnonlinear to the reduction in $NO_x$ emissions over Seoul. Nonlinear ozone response to reduction in VOC emissions is mitigated due to the $2^{nd}$-order ozone sensitivity coefficient which is much smaller than the $1^{st}$-order ozone sensitivity coefficient to the emissions in the magnitude.

Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan

  • Matsunaga, Sou N.;Shimada, Kojiro;Masuda, Tatsuhiko;Hoshi, Junya;Sato, Sumito;Nagashima, Hiroki;Ueno, Hiroyuki
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권1호
    • /
    • pp.29-32
    • /
    • 2017
  • Ozone concentration in Tokyo Metropolitan area is one of the most serious issues of the local air quality. Tropospheric ozone is formed by radical reaction including volatile organic compound (VOC) and nitrogen oxides ($NO_x$). Reduction of the emission of reactive VOC is a key to reducing ozone concentrations. VOC is emitted from anthropogenic sources and also from vegetation (biogenic VOC or BVOC). BVOC also forms ozone through $NO_x$ and radical reactions. Especially, in urban area, the BVOC is emitted into the atmosphere with high $NO_x$ concentration. Therefore, trees bordering streets and green spaces in urban area may contribute to tropospheric ozone. On the other hand, not all trees emit BVOC which will produce ozone locally. In this study, BVOC emissions have been investigated (terpenoids: isoprene, monoterpenes, sesquiterpenes) for 29 tree species. Eleven in the 29 species were tree species that did not emit BVOCs. Three in 12 cultivars for future planting (25 %) were found to emit no terpenoid BVOCs. Eight in 17 commonly planted trees (47%) were found to emit no terpenoid BVOC. Lower-emitting species have many advantages for urban planting. Therefore, further investigation is required to find the species which do not emit terpenoid BVOC. Emission of reactive BVOC should be added into guideline for the urban planting to prevent the creation of sources of ozone. It is desirable that species with no reactive BVOC emission are planted along urban streets and green areas in urban areas, such as Tokyo.

배출가스의 질소산화물과 이산화황 동시 저감 기술 (Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas)

  • 박현우;엄성현
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.607-618
    • /
    • 2017
  • 석탄화력발전소를 포함한 다양한 산업설비에서 유해 대기오염물질이 배출되고 있으며, 이러한 오염물질은 인체 건강과 자연 생태계에 영향을 준다. 특히, 질소산화물($NO_x$)와 이산화황($SO_2$)은 인체 건강에 악영향을 주는 미세먼지($PM_{2.5}$) 형성에 원인물질로 알려져 있다. 이러한 $NO_x$$SO_2$ 배출을 저감하기 위해서 선택적 촉매 환원(SCR)과 습식 탈황 공정(WFGD)으로 결합된 혼합 시스템이 사용되고 있으나, 높은 설치비용 및 운전비용을 필요로 하며, 유지보수의 문제점, 기술적인 한계점을 가지고 있다. 최근에 이러한 혼합 시스템을 대체하기 위한 $NO_x$, $SO_2$ 동시 저감 기술이 연구되고 있으며, 제안된 기술들은 흡수, 고도 산화(AOPs), 저온 플라즈마(NTP), 전자 빔(EB) 등이 있다. 이러한 기술들은 강한 수용성 산화제 및 산화력을 가진 화학활성종에 의한 $NO_x$, $SO_2$$HNO_3$, $H2SO_4$ 형태로의 산화 반응, 기-액 계면에서 $HNO_3$$H2SO_4$ 흡수 반응, 화학 첨가제에 의한 중화 반응을 기본으로 하고 있다. 본 논문에서는 각각의 동시 저감공정에 대한 기술적인 특징과 대용량 처리 공정 응용을 위한 향후 전망을 정리하였다.

화력발전소용 V2O5/TiO2계 촉매상에서 NH3-SCR 탈질반응으로부터의 N2O 생성 (Formation of N2O in NH3-SCR DeNOxing Reaction with V2O5/TiO2-Based Catalysts for Fossil Fuels-Fired Power Stations)

  • 김문현
    • Korean Chemical Engineering Research
    • /
    • 제51권2호
    • /
    • pp.163-170
    • /
    • 2013
  • $V_2O_5/TiO_2$계 촉매상에서 $NH_3$에 의한 $NO_x$의 선택적환원은 310의 지구온난화지수를 갖는 $N_2O$의 또 다른 인위적인 배출원이 될 수 있는 것으로 보고되고 있으므로, 본 총설은 화석연료를 연소시키는 화력발전소용 상기 촉매상에서 SCR 탈질반응 동안에 $N_2O$ 생성과 관계되는 주요 변수들의 유의성을 다루고자 한다. $NH_3$-SCR 탈질반응에서 $N_2O$ 배출은 $NH_3$ 산화반응에 더하여 반응 중에 존재하는 $NO_x$$NH_3$ 간의 부반응을 통해 일어나 이 부반응들의 정도는 SCR 촉매의 활성성분인 $V_2O_5$의 함량과 조촉매의 종류($WO_3$$MoO_3$), 반응온도, $NO_2/NO_x$ 비율, 산소농도, 공간속도, 수분함량, 열처리 등과 같은 유입가스 조건과 운전변수 및 화력발전소 현장에 설치된 상용 SCR 탈질공정에서 격은 촉매의 이력에 크게 의존한다. 상기의 모든 변수들이 탈질반응에서 $N_2O$ 생성과 관계된다고 할지라도, 몇몇 핵심변수들이 $N_2O$ 생성에 미치는 영향과 상용 SCR 공정에서 $N_2O$ 생성을 억제할 수 있는 방안이 고찰되었다.

The Experimental Study on the Low-temperature Combustion Characteristics of DME Fuel in a Compression Ignition Engine

  • Yoon, Seung Hyun
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.190-196
    • /
    • 2017
  • The aim of this work is to investigate the combustion and exhaust emission characteristics of low-temperature combustion (LTC) at various EGR test conditions using a single cylinder common-rail diesel engine. In high EGR rate combustion mode with DME fuel, 30% (${\Phi}=0.61$) and 50% (${\Phi}=0.86$) of EGR were respectively examined, and then the combustion, exhaust emissions, nano-particle characteristics of each cases were measured. From these results, it revealed that The ignition delay and combustion duration are prolonged as the increase of EGR rate. In addition, at an advanced injection timing (BTDC $30^{\circ}$), ignition delays were fairly increased because the dilution effect of EGR and also low charge in-cylinder temperature created a lean mixture, thus decreased the peak release rate.