회력발전소용 V,O,/TiO,계 촉매상에서 NH,-SCR 탈질반응으로부터의 N,O 생성

김문현†

대구대학교 환경공학과 712-714 경상북도 경산시 진량읍 내리리 15 (2012년 11월 27일 접수, 2012년 12월 29일 채택)

Formation of N₂O in NH₃-SCR DeNO_xing Reaction with V₂O₅/TiO₂-Based Catalysts for Fossil Fuels-Fired Power Stations

Moon Hyeon Kim[†]

Department of Environmental Engineering, Daegu University, 15 Naeri-ri, Jillyang-eup, Gyeongsan, Gyeongbuk 712-714, Korea (Received 27 November 2012; accepted 29 December 2012)

요 약

V₂O₅/TiO₂계 촉매상에서 NH₃에 의한 NO_x의 선택적환원은 310의 지구온난화지수를 갖는 N₂O의 또 다른 인위적인 배출원이 될 수 있는 것으로 보고되고 있으므로, 본 총설은 화석연료를 연소시키는 화력발전소용 상기 촉매상에서 SCR 탈질반응 동안에 N₂O 생성과 관계되는 주요 변수들의 유의성을 다루고자 한다. NH₃-SCR 탈질반응에서 N₂O 배출은 NH₃ 산화반응에 더하여 반응 중에 존재하는 NO_x와 NH₃ 간의 부반응을 통해 일어나고. 이 부반응들의 정도는 SCR 촉 매의 활성성분인 V₂O₅의 함량과 조촉매의 종류(WO₃와 MoO₃), 반응온도, NO₂/NO_x 비율, 산소농도, 공간속도, 수분함 량, 열처리 등과 같은 유입가스 조건과 운전변수 및 화력발전소 현장에 설치된 상용 SCR 탈질공정에서 격은 촉매의 이력에 크게 의존한다. 상기의 모든 변수들이 탈질반응에서 N₂O 생성과 관계된다고 할지라도, 몇몇 핵심변수들이 N₂O 생성에 미치는 영향과 상용 SCR 공정에서 N₂O 생성을 억제할 수 있는 방안이 고찰되었다.

Abstract – Selective catalytic reduction of NO_x by NH₃ (NH₃-SCR) over V₂O₅/TiO₂-based catalysts is recently reported to be an anthropogenic emitter of N₂O that is a global warming gas with a global warming potential of 310. Therefore, this review will get a touch on significance of some parameters regarding N₂O formation in the deNO_xing reaction for fossil fuels-fired power plants applications. The N₂O production in NH₃-SCR reaction with such catalysts occurs via side reactions between NO_x and NH₃ in addition to NH₃ oxidation, and the extent of these undesired reactions depends strongly on the loadings of V₂O₅ as a primary active component and the promoter as a secondary one (WO₃ and MoO₃) in the SCR catalysts, the feed and operating variables such as reaction temperature, NO₂/NO_x ratio, oxygen concentration, gas hourly space velocity, water content and thermal excursion, and the physical and chemical histories of the catalysts on site. Although all these parameters are associated with the N₂O production in deNO_xing reaction, details of some of them have been discussed and a better way of suppressing the N₂O production in commercial SCR plants has been proposed.

Key words: Nitrous Oxide (N₂O), Nitrogen Oxides (NO_x), Selective Catalytic Reduction, Titania-supported Vanadia-based Catalysts, Side Reactions

1.서 론

석탄, 석유, 천연가스 등과 같은 화석연료의 연소공정에서 주로 배 출되어 대기 중에 존재하는 질소산화물(nitrogen oxides, NO+NO₂= NO_x)은 대도시 광화학스모그(photochemical smog)를 유발하는 전구 물질 중에 하나인데, NO_x 그 자체가 사람의 호흡기 계통에 강한 독 성영향을 미치고, 대기 중에서 광화학반응을 통해 독성이 더 강한 광 화학산화물(photochemical oxidants)을 생성하므로, 화력발전소, 산 업용 보일러, 폐기물 소각장 등과 같은 대규모 고정원으로부터의 NO_x 배출제어를 위해 NH₃나 urea를 환원제로 사용하는 선택적촉매 환원법(selective catalytic reduction, SCR)이 가장 널리 적용되어왔 다[1,2]. 상기와 같은 대용량의 배기가스 내에 함유된 NO_x를 NH₃나 urea를 환원제로 사용하여 효과적으로 제거할 수 있는 SCR 기술(통 상 "NH₃-SCR" 또는 "urea-SCR"로 칭함)에서 V₂O₅-WO₃/TiO₂와 V₂O₅-MoO₃/TiO₂ 촉매가 가장 널리 사용되고 있는데[3], 최근의 연 구들[4-6]에 의하면 이들 SCR 탈질촉매상에서 NO_x-NH₃-O₂ 반응 동 안에 상당량의 N₂O⁷ 반응 부산물로 배출되는 것으로 나타났다.

[†]To whom correspondence should be addressed. E-mail: moonkim@daegu.ac.kr

^{*}이 논문은 전남대학교 서곤 교수님의 정년을 기념하여 투고되었습니다.

N₂O는 대도시의 대기 내에서 일어나는 광화학스모그반응과는 무 관하기 때문에 대기오염물질에 포함시키지 않고 있으며, 우리나라를 포함해 미국, 유럽연합 등의 선진국에서도 이에 대한 배출허용기준 과 같은 법적 규제제도는 시행되지 않고 있다[7,8]. 유엔기후변화협 약의 부속의정서인 교토의정서(Kyoto Protocol)에는 지구온난화를 유발하는 것으로 알려진 6 종류의 온실가스(CO2, CH4, N2O, HFCs, PFCs, SF, 가 열거되어 있는데, Phase I (2008~2012)에서 선진국들 은 N₂O를 포함하는 온실가스 배출량을 1990년 대비 평균 5.2%를 의 무적으로 감축해야 한다[9]. CO,의 지구온난화지수(global warming potential, GWP)는 1인데 반하여, N2O의 GWP는 310이므로[8], 동 일한 농도 수준에서 N₂O가 지구온난화에 기여하는 정도는 CO₂의 310배에 해당한다[10]. 이는 적합한 기술 적용이나 공정개선 등을 통 해 N₂O의 주요 인위적인 발생원으로부터의 배출량을 1톤 저감할 수 있다면 CO2 310톤을 감축하는 효과를 갖는다는 것을 의미한다. 따 라서, 상기한 SCR 공정에서의 N2O 생성 원인을 분석하여 상용 SCR 촉매제조와 SCR 공정 운전조건에 반영함으로써 상용 SCR 탈질설 비들로부터의 N₂O 배출량을 저감할 수 있는 방안을 수립할 필요성 이 있다.

상술한 배경을 바탕으로 본 연구에서는 V₂O₅/TiO₂계 SCR 탈질촉 매들이 가장 광범위하게 적용되고 있는 화력발전소에서의 N₂O 배출 특성을 고찰하고, deNO_x SCR 촉매상에서 발생되는 N₂O의 주요 생 성기구와 촉매조성에 따른 N₂O 생성 수준을 파악하고자 한다. 이러 한 고찰은 현재 화력발전소에 설치·운전되고 있는 V₂O₅/TiO₂계 SCR 탈질공정으로부터 배출되는 N₂O의 생성을 효과적으로 억제할 수 있 는 새로운 SCR 탈질촉매개발에 유용한 방향성을 제시할 수 있을 것 으로 기대된다. V₂O₅/TiO₂계 SCR 탈질촉매와 이를 적용한 화력발 전소 SCR 탈질설비로부터 비교적 높은 ppm 수준의 N₂O가 생성 배 출 수 있다는 사실이 최근에야 몇몇 연구들에 의해 보고되었기 때문에, 본 연구에서 다루어지는 N₂O 생성 관련 기존 연구들은 제한적이라 는 한계가 있을 수 있다.

2. 화력발전소로부터의 N₂O 배출

2-1. 연료연소에 의한 N₂O 배출

석탄, 석유, 천연가스 등과 같은 화석연료를 연소시켜 전기를 생산 하는 화력발전소로부터의 N₂O 배출은 크게 두 가지 생성경로를 통 해 일어날 수 있다. 즉, 화석연료 연소과정에서 생성되는 N₂O와 NO_x 제거용 SCR 촉매공정으로부터 생성되는 N₂O로 구분할 수 있는데, 먼저 연료연소에 의해 발생되는 N₂O의 구체적인 생성 메카니즘과 배출수준을 알아보고자 한다.

화력발전소에서 화석연료들의 연소로 인한 N₂O 배출 정도는 화 석연료의 종류, 연소온도, 연소방법, 연소실 압력, 연소실 내의 산소 농도 등에 따라 영향을 받을 수 있는데, 특히 그 배출량은 연소온도 에 크게 좌우된다. 화석연료들을 연소하는 화력발전소 연소기 내에 서 N₂O는 주로 다음과 같은 반응들에 의해 생성된다[11,12]:

$NH + NO \rightarrow N_2O + H, \tag{1}$

 $NCO + NO \rightarrow N_2O + CO,$ (2)

(3)

 $O + N_2 \leftrightarrow N_2 O.$

상기의 반응들은 연소실의 온도가 상대적으로 저온(530~900 ℃)이 고 연료가 풍부할 때 활발하게 일어나는 것으로 알려져 있고, 530 ℃

Korean Chem. Eng. Res., Vol. 51, No. 2, April, 2013

Table 1. N₂O emissions from fossil fuels-fired power plants[13,14]

Fuel	Combustion technology	N ₂ O concentration (ppm)	
Coal	PCC	≤5	
	FBC	20~200	
Oil	-	≤ 5	
Natural gas	-	≤ 2	
Let DCC - let i - let i - time FDC (let i - let - meteries			

Note. PCC: pulverized coal combustion; FBC: fluidized-bed combustion.

미만이거나 930 ℃ 이상의 연소온도에서 N₂O의 발생량은 거의 무 시할 수 있는 수준이다[11-13].

석탄을 화력발전소 연료원으로 사용할 때, 분말석탄연소법 (pulverized coal combustion, PCC)과 유동층연소법(fluidized-bed combustion, FBC)이 적용될 수 있는데, 후자의 연소법은 재래식 PCC에 비해 높은 열효율과 낮은 NOx 배출농도를 주기 때문에 최근 에 주목받고 있다. PCC 기술을 사용하는 석탄화력발전소로부터 생 성되는 N,O의 배출수준은 석탄의 종류, 연소실 압력, 산소농도 등을 포함하는 연소조건 등에 따라 달라질 수 있지만, Table 1에 수록되어 있듯이 5 ppm 이하로 일려져 있다[13-15]. 이러한 이유는 분말석탄 을 연소시키는 화력발전소의 연소기 운전온도가 1,000 ℃ 부근이므 로 상대적으로 저온에서 활성화되는 위의 생성 메카니즘들에 따른 N₂O의 생성량이 매우 낮기 때문이다. 반면에, FBC 기술을 적용할 경우 20~200 ppm 정도의 N2O가 배출되는 것으로 알려져 있는데 [13,14], 이는 NO, 배출량을 낮추기 위하여 PCC에 비해 상대적으로 낮은 연소온도를 유지함으로써 생성된 N2O가 열분해(thermal decomposition)되지 않기 때문이다. 중유나 천연가스를 연소시키는 화력발전소의 경우에도 N2O 배출농도는 5 ppm 이하이다(Table 1). 따라서, 석탄 유동층연소를 제외하면 화력발전소에서 사용되는 연료 의 종류들에 관계없이 연소 그 자체 공정으로부터 배출되는 N₂O 농 도는 5 ppm 이하임을 알 수 있다.

2-2. SCR 탈질공정에 의한 N₂O 배출

화석연료(석탄, 석유 및 천연가스)를 연료원으로 사용하는 화력발 전소들의 경우 각각에 적용되는 NO_x 배출허용기준을 충족시키기 위 하여 deNO_x 공정을 설치 운영하고 있다. 화력발전소와 같이 대용량 배기가스 내에 포함된 NO_x를 효과적으로 제거할 수 있는 대표적인 배연탈질기술은 NH₃-SCR 또는 urea-SCR이고[1,2], 이는 1970년대 후반 일본에서 세계 최초로 발전소와 산업용 보일러에 적용된 이래 1985년부터 유럽에서 상업운전이 확대되었고 이미 충분히 증명된 기 술이다. SCR 탈질기술은 연소공정 후단에 설치된 V₂O₅-WO₃/TiO₂ 나 V₂O₅-MoO₃/TiO₂ 촉매를 사용하여 300~400 ℃의 반응온도에서 NH₃나 urea를 환원제로 하여 NO_x를 선택적으로 환원시키는 것이다. 이러한 SCR 탈질공정으로부터 유의미한 때로는 매우 높은 수준으로 N₂O⁺ 생성될 수 있음은 비교적 최근에 인식되기 시작했다[4-6,14,16].

화력발전소에서 V_2O_5/TiO_2 계 SCR 탈질촉매공정의 설치·운영으 로 인해 발생되는 N_2O 배출수준은 SCR 촉매의 물리화학적 특성, deNO_x 제거설비로 유입되는 배기가스의 조성과 이에 함유된 입자상 물질의 물리화학적 특성, SCR 탈질공정의 운전시간 등에 의해 크게 영향을 받을 수 있다. 이러한 여러 변인들은 V_2O_5/TiO_2 계 deNO_x 촉 매상에서 일어나는 SCR 탈질반응 외에 원하지 않는 부반응들(side reaction)의 활성화에 관여함으로써 N_2O 배출수준을 높인다[4,6,14]. V_2O_5/TiO_2 계 촉매상에서 SCR 반응 동안에 이들 주요 변수들이 N_2O 생성에 어떻게, 어느 정도 수준으로 기여할 수 있는지에 관한 구체 적인 고찰은 아래에서 다루기로 하고, 우선 V_2O_5/TiO_2 계 촉매상에서 N_2O 생성과 관련된 주요 부반응들에 대해 알아보고자 한다.

2-2-1. DeNO_x SCR에서의 주반응

화력발전소와 같은 고정원에서 배출된 과잉의 O₂를 함유하는 배 기가스가 V₂O₅/TiO₂계 촉매층을 통과할 때 일어나는 SCR 반응은 아 래의 반응으로 대표될 수 있다[1,17]:

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O.$$
 (4)

배기가스 내에서 O₂와 NO 간의 기상반응을 통해 NO₂가 소량으로 생성될 수 있는 열역학적 조건(250 ℃ 이하)에서는 다음과 같은 반 응이 또한 일어날 수 있고[1,17,18],

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O, \tag{5}$$

반응 (5)는 반응 (4)보다 매우 빠른 속도로 일어난다[18]. 이들 $deNO_x$ 반응들은 환원제인 NH_3 와의 반응에 의해 NO_x 를 선택적으로 N_2 와 $H_2O로 전환시키기 때문에 SCR 탈질공정에서 필요로 하는 주반응에$ 해당한다.

2-2-2. DeNO, SCR에서 N₂O 생성 부반응

V₂O₅/TiO₂계 촉매를 기반으로 한 NH₃-SCR이나 urea-SCR 반응에 서 여러 종류의 부반응들이 일어날 수 있는데, 이들 중에서 N₂O 배 출과 직접적인 연관성을 갖는 부반응은 크게 두 그룹으로 구분된다. 첫째는 SCR 반응에서 NO_x와 NH₃간의 반응으로부터 N₂O가 생성되는 경우이다. 둘째는 환원제로 사용되는 NH₃가 반응물 중에 존재하는 O₂와 반응하여 N₂O로 산화되는 경우이다. 이 두 가지 반응 메카니 즙들 중에서 어느 반응경로에 의해 지배적으로 N₂O가 생성되느냐하는 문제는 V₂O₅/TiO₂계 촉매의 물성과 조성, 반응조건 등에 따라 달라 진다.

먼저, V₂O₅-WO₃/TiO₂ 촉매상에서 SCR 반응 동안에 NH₃와 NO_x 간의 반응에 의해 N₂O를 배출시킬 수 있는 주요 반응과 온도영역을 살펴보고자 한다. 200 ℃보다 낮은 반응온도에서는 열역학적으로 NO₂/NO_x 비율이 높기 때문에 다음과 같이 질산암모늄(NH₄NO₃)이 생성될 수 있다[17,19]:

$$2NO_2 + 2NH_3 \rightarrow NH_4NO_3 + N_2 + H_2O.$$
(6)

이렇게 생성된 NH₄NO₃는 200~250 °C에서 반응 (7)에 따라 NO₂와 반응하여 N₂O를 생성할 수 있다:

$$NH_4NO_3 + NO_2 \rightarrow N_2O + 2H_2O. \tag{7}$$

200 ℃ 미만의 반응온도라면 반응 (6)에 의해 생성된 NH₄NO₃는 SCR 촉매표면에 침적될 수도 있다[18]. V₂O₅/TiO₂계 촉매상에서 NO₂와 NH₃ 간의 반응에 의해 반응 부산물로 N₂O가 생성될 수 있 는 또 다른 반응들은 다음과 같다[14,17]:

$$8NO_2 + 6NH_3 \rightarrow 7N_2O + 9H_2O,$$
 (8)

$$4NO_2 + 4NH_3 + O_2 \rightarrow 4N_2O + 6H_2O.$$
 (9)

반응 (8)과 (9)는 주로 250~350 ℃의 반응온도 영역에서 발생되는 N₂O와 깊은 관계가 있는 것으로 알려져 있다. 350 ℃를 초과하는 온도영역에서 SCR 반응 동안에 N₂O의 생성이 관찰된다면, 이는 반

Table 2. Conversion of NO_x to N₂O in NH₃-SCR reaction with V₂O₅/ TiO₂-based catalysts

N ₂ O formation via	Reaction temperature	Conversion of NO_x to
reaction	(°C)	N ₂ O (%)
(7)	200~250	$0.7 \sim 2$
(8) and (9)	$250\sim 350$	$1 \sim 3$
(10) and (11)	> 350	< 5

응 (10)과 (11)에 의한 결과로 이해된다[3,17,19,20]:

$$8NO + 2NH_3 \rightarrow 5N_2O + 3H_2O, \tag{10}$$

$$4NO + 4NH_3 + 3O_2 \to 4N_2O + 6H_2O.$$
(11)

상기와 같은 온도영역에서 촉매층에 노출되는 반응물들 중에 NO_2 부분압은 매우 낮기 때문에 반응 (8)이나 (9)에 의한 N_2O 배출은 무 시할 수 있다. 3% V_2O_5 -9% WO_3 /TiO₂ 촉매를 이용한 NH_3 -SCR 반 응에서 관찰되었듯이[21], 반응 (11)에 따른 N_2O 생성 정도는 반응 물 중에 존재하는 O_2 농도에 영향을 받기는 하지만 반응온도의 영 향에 비하면 매우 낮은 편이다.

V₂O₅/TiO₂계 촉매상에서 상기 각 반응으로부터 NO_x가 N₂O로 전 환되는 정도는 반응온도 영역별로 구분하면 Table 2와 같다. 반응 (6) 에 의해 생성되어 촉매표면에 침적된 NH₄NO₃가 200~250 ℃의 반 응온도에서 반응 (7)에 따라 N₂O로 전환되는 비율은 NO_x 농도의 0.7 ~2% 정도이다[18-20,22,23]. 250~350 ℃에서는 SCR 반응 동안에 1~3%의 NO_x가 반응 (8)과 (9)에 의해 N₂O로 전환될 수 있고, 350 ℃ 이상에서 N₂O 생성에 기여하는 NO_x 전화율은 5% 이하다(Table 2). 이상에서 알 수 있는 사실은 반응물인 NO_x와 NH₃가 N₂O로 전환되 는 비율은 상기에 주어진 각 반응이 활성화되는 온도영역에 크게 의 존한다는 것이다.

V₂O₅-WO₃/TiO₂ 촉매상에서 NH₃-SCR 탈질반응 시, 환원제인 NH₃가 O₂와 반응하여 다량의 N₂O로 배출될 수 있는데, 이러한 NH₃ 산화반응은 350 ℃ 이상의 고온영역에서 주로 다음과 같이 일어난다 [3,17,19-21]:

$$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O.$$
 (12)

반응 (12)에 의해 생성되는 N_2 O의 농도는 NH_3 산화반응과 관련 된 여러 변수들(V_2O_5 함량, 조촉매의 조성, O_2 농도 등)에 의해 달라 질 수 있다. 이러한 변수들은 또한 부반응 (7)-(11)에 의한 N_2O 배출 에도 커다란 영향을 준다. 따라서, 아래에서는 NH_3 -SCR 반응 동안에 V_2O_5/TiO_2 계 촉매상에서 상기의 주요 부반응과 NH_3 산화반응에 의 한 N_2O 배출에 영향을 미치는 촉매조성, SCR 반응조건, 현장 탈질 설비 운용조건 등에 대하여 상세하게 고찰하고자 한다.

3. N₂O 배출에 미치는 V₂O₅/TiO₂계 SCR 촉매조성 및 공정변수의 영향

상술한 바와 같이, SCR 탈질촉매공정이 설치운전되지 않는 모든 화력발전소의 경우 연료원에 관계없이 N₂O 배출수준은 5 ppm 미만 으로 나타났으나, SCR 탈질공정이 설치운전되고 있는 화력발전소 에서는 상당한 양의 N₂O가 배출될 수 있다. V₂O₅/TiO₂계 촉매상에 서 NH₃-SCR 반응 동안에 N₂O 생성과 관련한 반응 (7)-(12) 중에 어 느 것이 지배적인가하는 문제는 수많은 인자들과 연관되어지는데,

Korean Chem. Eng. Res., Vol. 51, No. 2, April, 2013

N ₂ O formation via reaction between	Catalyst- and reaction-related parameters	
NO_x and NH_3	 •V₂O₅ content and crystallinity •Promotor types, <i>i.e.</i>, WO₃ and MoO₃ •Reaction temperature •O₂ concentration in feed gases •H₂O vapor concentration in feed gases •NO₂/NO_x ratio •Space velocity, particularly at temperatures greater than 350 °C •Thermal excursion, particularly at temperatures below 200 °C 	
$\rm NH_3$ and $\rm O_2$	 •V₂O₅ content and crystallinity •Promotor types, <i>i.e.</i>, WO₃ and MoO₃ •Reaction temperature •O₂ concentration in feed gases •H₂O vapor concentration in feed gases •Metal impurities in flue gases •On-site operation time •On-site fuel types 	

Table 3. Catalyst characteristics and reaction parameters regarding N₂O emissions in NH₃-SCR deNO_xing reaction and processes with V₂O_z/TiO₂-based catalysts

Table 3에서 N₂O 배출을 야기하는 반응별로 구분되어 있듯이 NO_x 와 NH₃ 간의 반응으로부터 생성되는 N₂O 농도는 V₂O₅/TiO₂계 SCR 촉매의 V₂O₅ 함량과 조촉매(WO₃, MoO₃)의 종류, 반응온도, O₂ 농 도, H₂O 농도, NO₂/NO_x 비율, 고온에서의 공간속도, 200 ℃ 이하 저 온영역에서의 열처리 방법에 의해 영향을 받는다[4,17-19,21-23]. NH₃ 산화반응에 의해 발생되는 N₂O 농도는 상기의 전자 다섯 가지 요인에 더하여 배기가스 분진에 함유된 금속 불순물의 종류와 농도, 발 전소 현장에서 SCR 탈질설비의 가동시간, 발전소에서 사용되고 있는 연료의 종류와 같은 인자들이 영향을 미친다[3,16,20,24].

3-1. V2O5 함량과 이의 결정성

석탄이나 석유(중유)를 연료원으로 하는 화력발전소에 적용되는 V_2O_5 /TiO₂계 SCR 상용촉매에서 탈질반응을 위한 활성성분인 V_2O_5 의 함량은 일반적으로 0.3~1.5% 정도로 제한되는데[1,4,17,25], 그 주된 이유는 NO_x 를 함유하는 배기가스 내에 공존하는 황산화물(sulfur oxides, $SO_2+SO_3=SO_x$) 중에서 SO_2 의 SO_3 로의 산화반응을 최소화 하기 위함이고, 또 다른 목적은 350 °C 이상의 반응온도에서 NH_3 산 화반응에 의한 N_2O 생성을 방지하기 위함이다.

상술한 V_2O_5 함량의 최적범위를 설정하는 이유를 감안하면, V_2O_5 함량이 1.5%를 초과할 경우 고온영역에서 NH₃ 산화반응으로 인한 N₂O 생성량이 현저히 증가할 것으로 예상되고 있다. Fig. 1에서는 450 °C에서 NH₃-SCR 반응 동안에 V_2O_5 함량 변화에 따른 N₂O 농 도변화를 보여주고 있다. 8% WO₃/TiO₂에 1% V_2O_5 이 담지되었을 때, 해당 반응온도에서 5 ppm 이하의 N₂O를 나타내지만(Fig. 1에서 "New"), V_2O_5 함량이 3%로 증가하면 반응 중에 관찰되는 N₂O는 38 ppm까지 증가하는 것을 볼 수 있다[5]. 이러한 N₂O 농도는 환산 CO₂ 농도로 계산하면 1.2%에 상당하므로, CO₂ 배출량 측면에서 보면 1.2% 증가를 의미하므로 SCR 촉매설계 단계에서 N₂O의 생성을 역 제할 수 있는 방안들이 고려되어야 한다. 상술한 결과는 다른 연구 그룹에서 관찰된 결과와도 잘 일치하는데, Djerad 등[26]은 9% WO₃/TiO₂에 3과 8% V₂O₅이 각각 담지된 촉매상에서 SCR 반응 중 에 생성되는 N₂O 농도를 측정하였을 때, 3% V₂O₅-9% WO₃/TiO₂의

Fig. 1. Formation of N₂O at 450 °C in the reduction of NO by NH₃ over V₂O₅-WO₃/TiO₂ with different V₂O₅ loadings after thermal ageing at 550~650 °C [5]. Reaction conditions: [NO]=1,000 ppm, [NH₃]=1,000 ppm, [O₂]=10%, [H₂O]=5% and GHSV =52,000 h⁻¹. Details of the ageings 1-3 have been described in Ref. [5].

경우 450 ℃의 반응온도에서 약 10 ppm N₂O를, 8% V₂O₅-9% WO₃/ TiO₂ 촉매상에서는 190 ppm N₂O 농도를 보고하였다. 따라서, 이러 한 결과들은 V₂O₅의 함량이 증가하면 NH₃-SCR 반응 동안에 생성 되는 N₂O 농도도 현저하게 증가한다는 것을 잘 보여주고 있다.

Fig. 1에서는 고온(550~650 °C)에서 열처리된 V_2O_5 - WO_3/TiO_2 에서의 N_2O 생성수준도 파악할 수 있는데, 3% V_2O_5 -8% WO_3/TiO_2 촉매상에서 나타나는 N_2O 농도에서 알 수 있듯이, V_2O_5 함량이 높고 보다 열악한 조건에서 열처리되면("Ageing 3") SCR 반응 중에생성되는 N_2O 농도는 증가한다. 이처럼 고온열화 후에 N_2O 생성농도가 증가하는 것은 TiO_2의 소결로 인해 이에 잘 분산된 V_2O_5 의 상당 부분이 결정성 V_2O_5 로 변화되고 입자크기도 증가하였기 때문으로 보고되었다[5]. 이러한 결과로부터 V_2O_5 함량이 동일한 촉매일경우 TiO_ 표면에 존재하는 결정성 V_2O_5 의 분율과 입자크기도 N_2O 생성에 중요한 역할을 한다는 것을 알 수 있다.

Fig. 2에서는 상업적으로 범용되고 있는 V_2O_5 함량과 유사한 담지량을 갖는 SCR 탈질촉매에서 NO 제거효율과 생성된 N_2O 농도를보여주고 있다[4]. Fig. 2(a)에서 보여주듯이, SCR 반응 중에 생성되는 N_2O 농도는 0.8% V_2O_5/TiO_2 에 비해 1.8% V_2O_5/TiO_2 촉매에서 훨씬 높게 나타나는 것을 알 수 있다. 동일한 촉매들에서 관찰되는 NO제거율을 서로 비교해보면, V_2O_5 함량이 증가할수록 저온영역에서현저한 활성증가를 보여준다(Fig. 2(b)).

 V_2O_5 와 함께 6% MoO₃이 TiO₂ 표면에 공존할 경우, 100% deNO_x 효율을 갖는 온도영역이 보다 넓어질 뿐만 아니라 저온영역에서의 NO 제거율이 증가되는 장점이 있지만, 350 °C 이상의 반응온도에서 N_2O 생성을 더욱 촉진하는 결과를 초래한다. 특히, 동일한 6% MoO₃ 함량에서 V_2O_5 함량이 0.8에서 1.8%로 증가하면 고온영역에서 생성 되는 N_2O 농도는 거의 2배 이상 증가하는 것을 보여준다. 따라서, 이러한 결과들을 종합하면, V_2O_5 함량 증가에 따라 고온영역에서 생 성되는 N_2O 농도도 증가하고, 조촉매로 MoO₃가 사용될 경우 해당 온도영역에서 N_2O 생성정도는 더욱 더 급격하게 활성화되는 것을 확인할 수 있다. 상용 SCR 촉매로 널리 사용되는 1.5% $V_2O_5-6\%$

Fig. 2. (a) N₂O formation and (b) NO removal activity in NH₃-SCR deNO_x reaction with: (\blacksquare) 0.8% V₂O₅-6% MoO₃/TiO₂; (\Box) 1.5% V₂O₅-6% MoO₃/TiO₂; (\Box) 0.8% V₂O₅/TiO₂; (

Fig. 3. Effect of promoter on (a) N₂O formation and (b) NO conversion in deNO_xing reaction with: (\blacksquare) 0.8% V₂O₅-6% MoO₃/TiO₂; (\Box) 6% MoO₃/TiO₂; (\bullet) 0.8% V₂O₅-9% WO₃/TiO₂; and (O) 9% WO₃/TiO₂ [4,27]. Reaction conditions: [NO]= 800 ppm, [NH₃]=800 ppm and [O₂]=0.9 or 1.0%. The data of NO conversion have been chosen in Refs. [4,27], and the concentrations of N₂O formed have been calculated using the N₂ selectivity data in Refs. [4,27].

 MoO_3/TiO_2 촉매상에서 생성되는 N_2O 농도를 보면, 전형적인 상용 SCR 탈질공정의 운전영역[3]에 속하는 400 °C에서 약 220 ppm 정 도인데, 이를 환산 CO₂ 농도로 계산하면 무려 6.82%에 해당한다. 이 러한 결과들은 NH_3 (또는 urea)-SCR 탈질공정에서 생성되는 N_2O 의 농도를 최소화하기 위해서는 기존 상용 V_2O_5/TiO_2 계 촉매상에서 N_2O 생성을 억제할 수 있는 연구개발이 필요함을 잘 보여주고 있다.

3-2. 조촉매의 종류

 V_2O_5/TiO_2 계 상용 SCR 촉매에는 주성분인 V_2O_5 외에 담지체로 사용된 TiO_2의 상전이 방지(억제)와 표면 산성도 향상을 위한 조촉 매(promotor)로 WO_3나 MoO_3를 첨가하는데[4], 일반적으로 WO_3는 약 10%, MoO_3는 약 6%를 최적함량으로 보고 있다[1,3,17,20,25]. WO_3와 MoO_3 모두 V_2O_5/TiO_2 계 SCR 탈질촉매의 조촉매 성분으로 널리 사용되고 있으나, 이들이 N_2O 생성에 기여하는 정도는 명확하 게 구분된다. Fig. 3(a)에 주어져 있듯이, 9% WO₃/TiO₂ 촉매의 경우 300~450 ℃ 의 반응온도에서 관찰되는 N₂O 농도는 2~12 ppm이고, 동일한 반응 온도에서 0.8% V₂O₅-9% WO₃/TiO₂의 경에는 5~17 ppm의 N₂O가 생성되는 것을 알 수 있다. 반면에, 동일한 온도영역에서 6% MoO₃/ TiO₂ 촉매는 9% WO₃/TiO₂보다 훨씬 높은 N₂O 생성농도를 나타내 고 있다. 즉, 300~450°C에서 6% MoO₃/TiO₂ 촉매는 온도증가와 함 께 생성되는 N₂O 농도의 증가를 보여주고 450 °C 부근에서는 약 250 ppm N₂O 농도를 갖는다.

0.8% V₂O₅-9% WO₃/TiO₂ 촉매상에서 관찰된 N₂O 생성에 미치는 조촉매인 WO₃의 영향과는 달리, 0.8% V₂O₅/TiO₂ 촉매에 6% MoO₃ 이 첨가되었을 때 350~450 °C에서 N₂O 생성농도는 더 증가하는 것 을 알 수 있다. Fig. 3(b)로부터 알 수 있듯이, NO 제거와 SCR 탈질 공정 운전 측면에서 보면 조촉매인 WO₃와 MoO₃ 모두 deNO_x 활성 의 향상(특히, 저온영역에서)을 가져오고 최고활성을 나타내는 온도 영역을 저온으로 이동시킬 뿐만 아니라 최고활성 온도영역을 확장시

Korean Chem. Eng. Res., Vol. 51, No. 2, April, 2013

168

Fig. 4. Effect of O₂ concentration on (□, ○) NO conversion and (□, ●) N₂O formation in deNO_xing reaction with 3% V₂O₅-9% WO₃/TiO₂. Reaction conditions: [NO]=500 ppm, [NH₃]=500 ppm and [O₂]=6 (□, ■) and 15% (○, ●). The data of NO conversion and N₂O concentration have been chosen in Ref. [21].

키는 긍정적인 역할을 하고 있다. 그러나, 0.8% V₂O₅-9% WO₃/TiO₂와 0.8% V₂O₅-6% MoO₃/TiO₂ 촉매상에서 NH₃-SCR 반응 동안에 발생 되는 N₂O 농도의 현저한 차이점이 존재한다는 사실은 SCR 탈질공 정으로부터의 N₂O 배출억제 측면에서 보면 조촉매 성분 선택에 매 우 주의해야 할 필요성을 잘 보여주고 있다.

3-3. 산소농도

 V_2O_5/TiO_2 계 상용 SCR 촉매상에서 SCR 탈질반응 동안에 생성되는 N_2O 농도는 촉매층에 도달하는 유입가스 내에 함유된 O_2 농도에 영 향을 받을 수 있다. 이는 주로 고온영역에서 앞에서 서술된 바 있는 반응 (12)에 의한 NH_3 산화반응의 활성화와 관계되는데, 그 대표적 인 예[21]는 Fig. 4에서 보여주고 있다.

Fig. 4(a)로부터 알 수 있듯이, 6%의 O₂ 농도에서 300 ℃ 이후부 터 반응온도 증가와 함께 생성되는 N₂O 농도도 증가한다. 특히, 425 ~500 ℃에서 관찰되는 N₂O는 70~195 ppm에 이르는 등 생성되는 N₂O 농도가 매우 높은 편인데, 이는 고온영역에서 촉진되는 NH₃ 산 화반응이 주로 N₂O 생성에 기여하기 때문이다[3,19-21]. 또한, 3% V₂O₅-9% WO₃/TiO₂ 촉매의 V₂O₅ 함량이 통상적으로 SCR 상용촉 매에서 널리 사용되는 함량보다 높기 때문에 고온영역에서의 N₂O 농도는 더 높음을 알 수 있다[26].

상대적으로 더 높은 O₂ 농도(15%) 조건일 때, 300 ℃ 이상의 모든 반응온도에서 생성되는 N₂O 농도수준은 더 낮게 관찰된다. SCR 반 응 동안에 N₂O 생성정도에 대한 O₂ 농도 의존성을 Fig. 4(b)에 주어 진 deNO_x 촉매활성과 함께 살펴보면, O₂ 농도가 상대적으로 높을 때 250 ℃ 이하 저온영역에서의 NO 제거효율은 더 우수하나 그 이상의 반응온도에서 나타나는 SCR 활성은 온도증가에 따라 감소하는 경 향을 보일 뿐만 아니라 6% O₂ 농도에 비해 더 낮은 활성을 보여주 고 있다. 이와 같은 결과는 반응물 중에 15% O₂가 존재할 때 300 ℃ 이상에서 보다 활발한 NH₃ 산화반응으로 인해 SCR 활성이 감소하는 것이기는 하나, SCR 반응 동안에 측정된 N₂O 농도는 오히려 낮게

Korean Chem. Eng. Res., Vol. 51, No. 2, April, 2013

관찰되므로(Fig. 4(a)) N₂O로의 NH₃ 산화반응 외에 N₂와 NO로의 산화반응도 일어남을 시사하고 있다[21].

3-4. 현장 배가스에 함유된 금속 불순물

지금까지 논의된 V₂O₅/TiO₂계 SCR 촉매들의 경우 대부분 발전소 SCR 탈질공정에 설치되는 상용촉매가 아닌 실험실에서 연구목적으 로 제조된 촉매들을 대상으로 SCR 반응 동안에 관찰되는 N₂O 생성 수준을 보고한 것들이다. 따라서, 실제 화력발전소 현장에서 SCR 탈 질공정 운영 시에 어느 정도의 N₂O가 생성될 수 있는지에 관한 직 접적인 증거로는 다소 미흡한 측면이 있다. 최근 본 연구의 선행연 구들[3,20,24]에서는 상기와 같은 불일치성을 극복하고 N₂O 생성억 제형 V₂O₅/TiO₂계 신촉매 개발의 일환으로 국내 화력발전소(석탄, 중유, 천연가스) 상용 SCR 탈질공정에 실제 설치되어 15,000 시간 이상 운전한 후에 수거된 SCR 상용촉매상에서 생성되는 N₂O 농도를 측정하였다. 해당 선행연구들에 따르면, 화력발전소 SCR 탈질공정 사용 전과 후의 V₂O₅·WO₃/TiO₂ 상용촉매에서의 N₂O 생성수준은 현저 한 차이점을 보였다.

N₂O 생성정도에서 상기와 같은 차이점을 유발하는 주요 요인들은 해당 화력발전소에서 연소시키는 연료의 종류, 현장 운전조건에서 촉매표면에 침적되는 분진 내에 함유된 금속 불순물의 종류와 그 양, 총 운전시간 등이었는데[3,20,24], Fig. 5에서는 국내 한 석탄화력발전소 SCR 탈질설비에서 주어진 시간 동안 사용되기 전의 1.68% V₂O₅-7.6% WO₃/TiO₂ 상용촉매와 17,400 시간 동안 사용된 후에 채취된 해당 상용촉매상에서 측정된 N₂O 농도를 반응온도의 함수로 보여주고 있 다[3].

화력발전소 탈질설비에 설치되기 전 1.68% V₂O₅-7.6% WO₃/TiO₂ 촉매상에서 SCR 반응 동안에 생성되는 N₂O는 400 °C까지는 전혀 관찰되지 않지만, 450과 480 °C에서는 각각 20과 54 ppm 정도인데 이는 고온에서의 NH₃ 산화반응 때문이었다[3]. 동일한 상용촉매가 SCR 탈질설비에서 17,400 시간 동안 사용된 후에는 고온영역에서

Fig. 5. (■, ●) N₂O formation and (□, ○) NO conversion in deNO_xing reaction with a commercial 1.68% V₂O₅-7.6% WO₃/TiO₂ catalyst. Symbol: (■, □) an as-received sample; (●, ○) a sample used for 17,400 h in a domestic coal-fired power plant. Reaction conditions: [NO]=500 ppm, [NH₃]=500 ppm and [O₂] =5%. The data of NO conversion and N₂O concentration have been chosen in Ref. [3].

N₂O 생성정도가 현저하게 증가할 뿐만 아니라 보다 낮은 온도에서 도 N₂O 생성을 보여준다. 사용 후 촉매는 480 °C의 반응온도에서 약 100 ppm 정도의 N₂O 생성을 나타내고, 400 °C에서도 약 15 ppm N₂O 농도를 보여주는데, 이는 각각 3.1과 0.5% 환산 CO₂ 배출증가에 상당한다.

상기 시간 동안 사용된 SCR 촉매상에서 N₂O 생성농도의 증가 원 인을 규명하기 위한 연구결과에 의하면[3], 17,400 시간 동안 SCR 공정을 운전할 때 촉매표면에 침적된 여러 금속산화물과 같은 불순 물에 의한 영향이 가장 큰 요인이었다. 따라서, 이와 같은 연구결과 는 발전 현장에서 운용하고 있는 기존 상용 SCR 탈질공정으로부터 다량의 N₂O가 배출될 수 있음을 보여주는 한 사례에 해당되고, 금 속산화물 침적 등에 의한 N₂O 생성촉진을 억제하기 위해서는 일정 시간 운전 후에 공기 역분사 등과 같은 방법으로 SCR 촉매 표면에 침적된 금속 불순물을 제거해주거나 촉매 조기교체나 재생을 통해 N₂O 배출 가능성을 차단할 필요성이 있다.

4. 결 론

화석연료를 사용하는 화력발전소로부터 발생할 수 있는 N₂O 배 출수준을 살펴본 결과, 석탄, 석유, 천연가스 등과 같은 연료원의 종 류에 관계없이 발전소 연료연소 그 자체로부터 배출될 수 있는 N₂O 농도수준은 5 ppm 이하인 것으로 나타난다. 반면에, V₂O₅/TiO₂계 촉 매를 적용하는 NH₃-SCR 탈질공정으로부터 발생되는 N₂O 배출수준 은 수십에서 수백 ppm에 이를 수 있는데, 주로 NO_x와 NH₃ 간의 부 반응과 NH₃ 산화반응으로부터 생성된다.

상기 부반응과 NH₃ 산화반응을 통한 N₂O 생성정도는 SCR 탈질 반응에 사용된 V₂O₅/TiO₂계 촉매의 물성과 조성(V₂O₅의 함량과 결 정성, 조촉매의 종류 등), 반응조건(반응온도, NO₂ 농도, O₂ 농도 등), 발전소에서 사용하는 연료종 차이에 따른 금속산화물 불순물의 침적, 발전소 현장 탈질설비의 운전시간 등에 따라 현저히 달라질 수 있다. V₂O₅/TiO₂계 촉매상에서 SCR 반응 동안에 생성되는 N₂O는 V₂O₅ 함량이 높을수록, TiO₂ 표면에 존재하는 V₂O₅의 결정성이 증가할수 록, 조촉매로 WO₃보다는 MoO₃를 사용할 때, 반응온도가 높을수록, 유입가스 내에 존재하는 NO₂ 농도가 높을수록, O₂ 농도가 낮을수록 높은 수준으로 생성된다. 또한, 석탄이나 중유와 같은 화석연료를 연 소시키는 화력발전소 현장 SCR 탈질설비에 적용된 V₂O₅/TiO₂계 상 용촉매에 침적되는 금속산화물들은 N₂O 생성을 촉진하는 역할을 한다.

N₂O의 GWP는 CO₂의 310배이므로, 1 톤의 N₂O 배출감축은 CO₂를 310 톤 감축하는 것과 동일한 감축목표를 달성할 수 있다. 따라서, V₂O₅/TiO₂계 상용촉매를 기반으로 하는 NH₃-SCR 탈질공정을 적용 하고 있는 국내 화력발전소들뿐만 아니라 타 산업시설(제철소 소결 공장, 시멘트 공장, 질산공장)과 쓰레기 소각장 등에서는 SCR 탈질 공정으로부터의 N₂O 배출을 효과적으로 억제할 수 있는 V₂O₅/TiO₂ 계(보다 바람직하게는 V₂O₅-WO₃/TiO₂ 계열) 신촉매의 중요성을 깊 이 인식할 필요성이 있다.

참고문헌

 Ham, S. W. and Nam, I. S., in J. J. Spivey (Ed.), Selective Catalytic Reduction of Nitrogen Oxides by Ammonia, The Royal Society of Chemistry, Cambridge, 236-271(2002).

- Choi, J. H., Kim, M. H. and Nam, I. S., "Heating Element of an Air Preheater in a Utility Boiler as an SCR Reactor Removing NO by NH₃," *Ind. Eng. Chem. Res.*, 44, 707-714(2005).
- Kim, M. H. and Ham, S. W., "Determination of N₂O Emissions Levels in the Selective Reduction of NO_x by NH₃ over an On-Site-Used Commercial V₂O₅-WO₃/TiO₂ Catalyst using a Modified Gas Cell," *Top. Catal.*, **53**, 597-607(2010).
- Lietti, L., Nova, I., Ramis, G., Acqua, L.D., Busca, G., Giamello, E., Forzatti, P. and Bregani, F., "Characterization and Reactivity of V₂O₅-MoO₃ De-NO_x SCR Catalysts," *J. Catal.*, **187**, 419-435 (1999).
- Madia, G., Elsener, M., Koebel, M., Raimondi, F. and Wokaun, A., "Thermal Stability of Vanadia-Tungsta-Titania Catalysts in the SCR Process," *Appl. Catal. B*, **39**, 181-190(2002).
- Martin, J. A., Yates, M., Avila, P., Suarez, S. and Blanco, J., "Nitrous Oxide Formation in Low Temperature Selective Catalytic Reduction of Nitrogen Oxides with V₂O₅/TiO₂ Catalysts", *Appl. Catal. B*, **70**, 330-334(2007).
- Yang, W. H. and Kim, M. H., "Catalytic Reduction of N₂O by H₂ over Well-Characterized Pt Surfaces," *Korean J. Chem. Eng.*, 23, 908-918(2006).
- Perez-Ramirez, J., Kapteijn, F., Schoffel, K. and Moulijn, J. A., "Formation and Control of N₂O in Nitric Acid Production: Where Do We Stand Today?", *Appl. Catal. B*, 44, 117-151(2003).
- Wigley, T. M. L., "The Kyoto Protocol: CO₂, CH₄ and Climate Implications," *Geophys. Res. Lett.*, 25, 2285-2288(1998).
- Kim, M. H., "Emission Control Technologies for N₂O from Adipic Acid Production Plants," J. Environ. Sci., 20, 755-765(2011).
- Turns, S. R., An Introduction to Combustion: Concepts and Applications, 2nd ed., McGraw-Hill, Singapore(2000).
- Correa, S. M., "A Review of NO_x Formation under Gas-Turbine Combustion Conditions," *Combust. Sci. Technol.*, 87, 329-362(1992).
- de Soete, G. G., "Nitrous Oxide from Combustion and Industry: Chemistry, Emissions and Control," *Rev. Inst. Franc. Petr.*, 48, 413-451(1993).
- Gutierrez, M. J. F., Baxter, D., Hunter, C. and Svoboda, K., "Nitrous Oxide (N₂O) Emissions from Waste and Biomass to Energy Plants," *Waste Manage. Res.*, 23, 133-147(2005).
- Wojtowicz, M. A., Pels, J. R. and Moulijn, J. A., "N₂O Emission Control in Coal Combustion," *Fuel*, 73, 1416-1422(1994).
- Krocher, O. and Elsener, M., "Chemical Deactivation of V₂O₅/WO₃-TiO₂ SCR Catalysts by Additives and Impurities from Fuels, Lubrication Oils, and Urea Solution: I. Catalytic Studies," *Appl. Catal. B*, **75**, 215-227(2008).
- Parvulescu, V. I., Grange, P. and Delmon, B., "Catalytic Removal of NO," *Catal. Today*, 46, 233-316(1998).
- Koebel, M., Madia, G. and Elsener, M., "Selective Catalytic Reduction of NO and NO₂ at Low Temperatures," *Catal. Today*, 73, 239-247(2002).
- Madia, G, Koebel, M., Elsener, M. and Wokaun, A., "Side Reactions in the Selective Catalytic Reduction of NO_x with Various NO₂ Fractions," *Ind. Eng. Chem. Res.*, **41**, 4008-4015(2002).
- Kim, D. W., Kim, M. H. and Ham, S. W., "An On-line Infrared Spectroscopic System with a Modified Multipath White Cell for Direct Measurements of N₂O from NH₃-SCR Reaction," *Korean J. Chem. Eng.*, 27, 1730-1737(2010).
- 21. Djerad, S., Crocoll, M., Kureti, S., Tifouti, L. and Weisweiler, W.,

170

"Effect of Oxygen Concentration on the NO_x Reduction with Ammonia over V₂O₅-WO₃/TiO₂ Catalyst," *Catal. Today*, **113**, 208-214(2006).

- Suarez, S., Jung, S. M., Avila, P., Grange, P. and Blanco, J., "Influence of NH₃ and NO Oxidation on the SCR Mechanism on Copper/Nickel and Vanadium Oxide Supported on Alumina and Titania," *Catal. Today*, **75**, 331-338(2002).
- Blanco, J., Avila, P., Suarez, S., Martin, J. A., Knapp, C., "Aluminaand Titania-Based Monolithic Catalysts for Low Temperature Selective Catalytic Reduction of Nitrogen Oxides," *Appl. Catal. B*, 28, 235-244(2000).
- Kim, M. H. and An, T. H., "A Commercial V₂O₅-WO₃/TiO₂ Catalyst Used at an NH₃-SCR deNO_x Process in an Oil-Fired Power

Plant: Cause of an Increase in deNO_xing and NH₃ Oxidation Performances at Low Temperatures," *Res. Chem. Intermed.*, **37**, 1333-1344(2011).

- 25. Forzatti, P., "Present Status and Perspectives in De-NO_x SCR Catalysis," *Appl. Catal. A*, **222**, 221-236 (2001).
- Djerad, S., Tifouti, L., Crocoll, M. and Weisweiler, W., "Effect of Vanadia and Tungsten Loadings on the Physical and Chemical Characteristics of V₂O₅-WO₃/TiO₂ Catalysts," *J. Mol. Catal. A*, 208, 257-265(2004).
- Lietti, L., Nova, I. and Forzatti, P., "Selective Catalytic Reduction (SCR) of NO by NH₃ over TiO₂-Supported V₂O₅-WO₃ and V₂O₅-MoO₃ Catalysts," *Top. Catal.*, **11/12**, 111-122(2000).