• 제목/요약/키워드: Nitrogen injection

검색결과 349건 처리시간 0.025초

액체로켓엔진에서의 상온 기체를 이용한 라이너 막냉각 특성 연구 (A Study on Film Cooling Characteristics of Liner in Liquid Rocket Engine)

  • 전준수;이양석;이동형;김유;고영성;정해승
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.170-173
    • /
    • 2007
  • 본 연구에서는 액체로켓엔진 내부에 라이너를 설치하고 기체 질소를 이용한 막냉각 방법을 사용하여, 라이너의 막냉각 특성을 살펴보았다. 고온 가스는 액체로켓 연소가스와 액체질소를 혼합하여 사용하였다. 기존의 액체로켓엔진 시험 설비에 추가적으로 라이너 냉각 기체를 공급 설비를 구축하였으며, 라이너 및 냉각 기체 공급부를 제작하였다. 10초 연소 실험을 통해 라이너 내부 고온 가스의 온도와 라이너 외부 벽면 온도를 측정하였으며, 기체 질소에 의한 라이너 냉각 특성을 확인하였다.

  • PDF

고농도 질산성 질소를 함유한 산세폐수의 생물학적 처리에 관한 연구 (A Study on the Biological Treatment of Acid Pickling Wastewater Containing a High Concentration of Nitrate Nitrogen)

  • 박상진;이상혁
    • 한국물환경학회지
    • /
    • 제31권3호
    • /
    • pp.253-261
    • /
    • 2015
  • The purpose of this study is the efficient biological treatment of highly concentrated nitrate nitrogen by calcium ion control present within the pickling wastewater. In laboratory scale's experiments research was performed using a sequencing batch reactor and the evaluation of denitrification reaction in accordance with the injection condition of calcium ions, the surface properties of microorganisms, and the evaluation of sludge precipitability were performed. Results of the study showed that the denitrification reaction was delayed when injecting more than 600 mg/L of the calcium ion within the denitrification process. In addition, we observed the absorption form of calcium ions absorbed on the surface of microorganisms following an increase in the calcium ion dose. It was found that as the calcium ion dose increased the sludge precipitability also increased continuously and it is judged that a smooth denitrification induction is possible when treating the nitrate nitrogen by the calcium ion control of pickling waste water and the shortening of precipitation time enables a liquid operation to increase the reaction time.

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

자철광 분말을 이용한 하수처리시스템의 질소, 인 제거효율에 관한 연구 (Study on the Removal Efficiency of Nitrogen and Phosphorus in Wastewater Treatment System Using Magnetite Powder)

  • 조은영;박승민;여인설;문정식;박주영;김종철;김양섭;박찬규
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.43-47
    • /
    • 2015
  • As water quality regulations have tightened, many studies to improve wastewater treatment efficiency have been performed. In this study, magnetite powder was used to maintain a high concentration of MLSS in lab-scale wastewater treatment system. After magnetite powder injection, MLSS concentration was above 8,000 mg/L and it was 3.2 times higher than control group(2,500 mg/L). In addition, nitrogen removal efficiency and phosphorus removal efficiency comparing with the control group was increased 20.5% and 11%, respectively.

HRT 변경에 따른 호기성 그래뉼 슬러지의 오염원 제거효율에 미치는 영향 (Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge)

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제28권8호
    • /
    • pp.669-676
    • /
    • 2019
  • The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.

Molecular Orbital Calculations for the Formation of GaN Layers on Ultra-thin AlN/6H-SiC Surface Using Alternating Pulsative Supply of Gaseous Trimethyl Gallium (TMG) and NH$_3$

  • 성시열;황진수
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.154-158
    • /
    • 2001
  • The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH3 gases have been examined by ASED-MO calculations. We postulate that the gallium cul ster was formed with the evaporation of CH4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl galluim (MMG). During the injection of NH3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth.

플라즈마 질소 이온 주입한 초경공구의 고속가공시 공구마멸 특성 (Tool Wear Characteristics of Tungsten Carbide Implanted with Plasma Source Nitrogen Ions in High-speed Machining)

  • 박성호;왕덕현
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.34-39
    • /
    • 2022
  • The ion implantation technology changes the chemical state of the surface of a material by implanting ions on the surface. It improves the wear resistance, friction characteristics, etc. Plasma ion implantation can effectively reinforce a surface by implanting a sufficient amount of plasma nitrogen ions and using the injection depth instead of an ion beam. As plasma ion implantation is a three-dimensional process, it can be applied even when the surface area is large and the surface shape is complicated. Furthermore, it is less expensive than competing PVD and CVD technologies. and the material is The accommodation range for the shape and size of the plasma is extremely large. In this study, we improved wear resistance by implanting plasma nitrogen ions into a carbide end mill tool, which is frequently used in high-speed machining

배기가스재순환 적용에 따른 Off-road 엔진의 연료 분사 시기 전략에 관한 연구 (A Study on the Strategy of Fuel Injection Timing according to Application of Exhaust Gas Recirculation for Off-road Engine)

  • 하형수;신재식;표수강;정학섭;강정호
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.447-453
    • /
    • 2016
  • The reduction technologies of exhaust gas from both the off-road engine and on-road vehicles are important. It is possible to apply various combustion technologies with engines after the application of a treatment technology to this field. In this study, main injection timing, pilot injection timing, and exhaust gas recirculation (EGR) rate were selected as the experimental parameters whose effects on the emission of exhaust gases and on the fuel consumption characteristics were to be determined. In the experiment, the emission of nitrogen oxide (NOx) and Smoke, and the Torque at the same fuel consumption level, were measured. The experimental data were analyzed using the Taguchi method with an L9 orthogonal array. Additionally, analysis of variation (ANOVA) was used to confirm the influence of each parameter. Consequently, the level of each parameter was selected based on the signal-to-noise ratio data (main injection timing, 3; pilot injection timing, 3; EGR rate, 2), and the results of the Taguchi prediction were verified experimentally (error: NOx, 10.3 %; Smoke, 6.6 %; brake-specific fuel consumption (BSFC), 0.6 %).

Dimethyl Ether와 디젤의 거시적 분무 특성 비교 (Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel)

  • 유준;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

수분함량과 CO2 가스 주입에 따른 분리대두단백 압출성형물의 이화학적 특성 (Effects of Moisture Content and CO2 Gas Injection on Physicochemical Properties of Extruded Soy Protein Isolate)

  • 김나영;류기형
    • 산업식품공학
    • /
    • 제21권2호
    • /
    • pp.150-157
    • /
    • 2017
  • 본 연구는 수분함량(40, 50, 60%)과 $CO_2$ 가스 주입(0, 800 mL/min)에 따라 분리대두단백 조직화 압출성형물에 미치는 영향을 알아보기 위하여 이화학적 특성을 분석하였다. 압출성형 공정변수는 사입량 100 g/min, 스크루 회전속도 250 rpm, 사출구 온도 $135^{\circ}C$로 고정하였다. 수분함량이 각각 40, 50%일 때 $CO_2$ 가스 주입량이 0 mL/min에서 800 mL/min으로 증가할수록 직경팽화율과 비길이는 증가하였고 조각밀도는 감소하였다. 하지만 수분함량 60%일 때는 직경팽화율과 비길이는 감소하였고 조각밀도는 증가하였다. $CO_2$ 가스 주입량이 0 mL/min에서 800 mL/min으로 증가할수록 크기가 작은 기공들이 많이 형성되었다. 또한 $CO_2$ 가스 주입량이 0 mL/min에서 800 mL/min으로 증가할수록 수용성질소지수와 수분흡착지수는 증가하였고 조직잔사지수와 조직감은 감소하였다. $CO_2$ 가스 800 mL/min를 주입한 분리대두단백 조직화 압출성형물은 $CO_2$ 가스 0 mL/min을 주입한 분리대두단백 조직화 압출성형물보다 팽화가 잘 일어났으며 단면적이 작은 기공들이 형성되었으나 수용성질소지수와 조직잔사지수, 조직감 분석에서는 최적 조직화에 대한 연구가 더 필요한 것으로 판단되었다.