Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.8.669

Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge  

Kim, Hyun-Gu (BlueBank Co., Ltd., Business incubator center, Myongji University)
Ahn, Dae-Hee (BlueBank Co., Ltd., Business incubator center, Myongji University)
Publication Information
Journal of Environmental Science International / v.28, no.8, 2019 , pp. 669-676 More about this Journal
Abstract
The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.
Keywords
Aerobic granular sludge; Sequencing batch reactor; Hydraulic retention time; Nitrogen; Mixed liquor suspended solids;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Su, K. Z., Ni, B. J., Yu, H. Q., 2013, Modeling and optimization of granulation process of activated sludge in sequencing batch reactors, Biotechnol. Bioeng., 110, 1312-1322.   DOI
2 Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172.   DOI
3 Tan, X., Acquah, I., Liu, H., Li, W., Tan, S., 2019, A Critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective, Chemosphere, 220, 1150-1162.   DOI
4 Tay, J. H., Liu, Q. S., Liu, Y., 2001, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor, J. Appl. Microbiol., 91, 68-75.
5 Wang, X., Chen, Z., Shen, J., Zhao, X., Kang, J., 2019, Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation, Bioresour. Technol., 271, 258-265.   DOI
6 Winkler, M. K. H., Bassin, J. P., Kleerebezem, R., de Bruin, L. M. M., van den Brand, T. P. H., van Loosdrecht, M. C. M., 2011, Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO GAO competition at high temperatures, Water Res., 45, 3291-3299.   DOI
7 Yae, J. B., Ryu, J. H., Hong, S. W., Kim, H. G., Ahn, D. H., 2018, Applicability of the SBR Process using Aerobic Granular Sludge (AGS) in municipal wastewater treatment, J. Environ. Sci. Int., 27, 233-240.   DOI
8 Yang, S. F., Li, X. Y., Yu, H. Q., 2008, Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions, Process Biochem., 43, 8-14.   DOI
9 Zeng, R. J., Lemaire, R., Yuan, Z., Keller, J., 2003, Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor, Biotechnol. Bioeng., 84, 170-178.   DOI
10 American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
11 Bassin, J. P., Pronk, M., Muyzer, G., Kleerebezem, R., Dezotti, M., van Loosdrecht, M. C. M., 2011, Effect of elevated salt concentrations on the aerobic granular sludge process: Linking microbial activity with microbial community structure, Appl. Environ. Microbiol., 77, 7942-7953.   DOI
12 Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., Heijnen, J. J., 1999, Aerobic granulation in a sequencing batch reactor, Water Res., 33, 2283-2290.   DOI
13 Cetin, E., Karakas, E., Dulekgurgen, E., Ovez, S., Kolukirik, M., Yilmaz, G., 2018, Effects of high -concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater, Water Res., 131, 74-89.   DOI
14 Fang, H. H. P., Yu, H. Q., 2000, Effect of HRT on mesophilic acidogenesis of dairy wastewater, J. Environ. Eng., 126, 1145-1148.   DOI
15 De Bruin, L. M. M., de Kreuk, M. K., van der Roest, H. F. R., Uijterlinde, C., van Loosdrecht, M. C. M., 2004, Aerobic granular sludge technology: An alternative to activated sludge?, Water Sci. Technol., 49, 1-7.
16 De Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769.   DOI
17 De Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., dos Santos, A. B., 2018, Aerobic granular sludge: Cultivation parameters and removal mechanisms, Bioresour. Technol., 270, 678-688.   DOI
18 Fang, H. H. P., Yu, H. Q., 2001, Acidification of lactose in wastewater, J. Environ. Eng., 127, 825-831.   DOI
19 Hamza, R. A., Sheng, Z., Iorhemem, O. T., Zaghloul, M. S., Tay, J. H., 2018, Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater, Water Res., 147, 287-298.   DOI
20 Khan, M. Z., Mondal, P. K., Sabr, S., 2013, Aerobic granulation for wastewater bioremediation: A review, Can. J. Chem. Eng., 91, 1045-1058.   DOI
21 Kim, H. G., Ahn, D. H., Cho, E. H., Kim, H. Y., Ye, H. Y., Mun, J. S., 2016, A Study on the biological treatment of RO concentrate using aerobic granular sludge, J. Korean Soc. Environ. Eng., 38, 79-86.   DOI
22 Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A Laboratory proof-of-concept, Water Res., 115, 210-219.   DOI
23 Mohan, S. V., Rao, N. C., Sarma, P. N., 2007, Simulated acid azo dye (acid black 210) wastewater treatment by periodic discontinuous batch mode operation under anoxic aerobic-anoxic microenvironment conditions, Ecol. Eng., 3, 242-250.   DOI
24 Liu, Y., Liu, Z., Wang, F., Chen, Y., Kuschk, P., Wang, X., 2014, Regulation of aerobic granular sludge reformulation after granular sludge broken: Effect of Poly Aluminum Chloride (PAC), Bioresour. Technol., 158, 201-208.   DOI
25 Liu, Y., Yang, S. F., Tay, J. H., 2003, Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios, Appl. Microbiol. Biotechnol., 61, 556-561.   DOI
26 Liu, Y. Q., Moy, B. Y. P., Tay, J. H., 2007, COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors, Enzyme Microb. Technol., 42, 23-28.   DOI
27 Morgenroth, E., Sherden, T., van Loosdrecht, M. C. M., Heijnen, J. J., Wilderer, P. A., 1997, Aerobic granular sludge in a sequencing batch reactor, Water Res., 31, 3191-3140.   DOI
28 Muda, K., Aris, A., Salim, M. R., Ibrahim, Z., van Loosdrecht, M. C. M., Ahmad, A., Nawahwi, M. Z., 2011, The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater, Water Res., 45, 4711-4721.   DOI
29 Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163.   DOI
30 Rosman, N. H., Anuar, A. N., Chelliapan, S., Din, M. F. M., Ujang, Z., 2014, Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time, Bioresour. Technol., 161, 155-161.   DOI