• Title/Summary/Keyword: Nitrogen dioxide($NO_2$)

Search Result 233, Processing Time 0.02 seconds

Study on Computational Fluid Dynamics(CFD) simulation for NOx dispersion around combined heat and power plant (열병합발전소 질소산화물 확산에 관한 전산유체역학 simulation 연구)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • In order to deal with the globally increasing electric power demand and reduce $CO_2$ emission, complex thermoelectric power plants are being constructed in densely populated downtown areas. As the environmental regulations are continuously strengthened, various facilities like low NOx burner and SCR are being installed to reduce NOx emission. This study is applied using the TMS emission of $NO_2$ from combined heat and power plant located in Goyang-si Gyeonggi-do. Applying data to the computational fluid dynamics(CFD), and compared with the actual measurement results. It is judged that even though there might be differences between actual measurements and CFD results due to the instant changes of wind direction and wind speed according to measurement time during measurement period, modeling results and actual measurement results showed similar concentration at most forecasting areas and therefore, the forecasting concentration could be deducted which is close to actual measurement by calculating the contribution concentration considering the surrounding concentration in the future.

Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1562-1570
    • /
    • 2014
  • The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.

Technical Tasks and Development Current Status of Organic Solar Cells (유기 태양전지의 개발 현황과 기술 과제)

  • Jang, Ji Geun;Park, Byung Min;Lim, Sungkyoo;Chang, Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.434-442
    • /
    • 2014
  • Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

OPF with Environmental Constraints with Multi Shunt Dynamic Controllers using Decomposed Parallel GA: Application to the Algerian Network

  • Mahdad, B.;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2009
  • Due to the rapid increase of electricity demand, consideration of environmental constraints in optimal power flow (OPF) problems is increasingly important. In Algeria, up to 90% of electricity is produced by thermal generators (vapor, gas). In order to keep the emission of gaseous pollutants like sulfur dioxide (SO2) and Nitrogen (NO2) under the admissible ecological limits, many conventional and global optimization methods have been proposed to study the trade-off relation between fuel cost and emissions. This paper presents an efficient decomposed Parallel GA to solve the multi-objective environmental/economic dispatch problem. At the decomposed stage the length of the original chromosome is reduced successively and adapted to the topology of the new partition. Two subproblems are proposed: the first subproblem is related to the active power planning to minimize the total fuel cost, and the second subproblem is a reactive power planning design based in practical rules to make fine corrections to the voltage deviation and reactive power violation using a specified number of shunt dynamic compensators named Static Var Compensators (SVC). To validate the robustness of the proposed approach, the algorithm proposed was tested on the Algerian 59-bus network test and compared with conventional methods and with global optimization methods (GA, FGA, and ACO). The results show that the approach proposed can converge to the near solution and obtain a competitive solution at a critical situation and within a reasonable time.

Analysis of Potential on Measurement of SO2 and NO2 using Radiative Transfer Model and Hyperspectral Sensor (복사전달모델과 초분광센서를 이용한 아황산가스와 이산화질소의 농도 측정 가능성 분석)

  • Shin, Jung-il;Kim, Ik-Jae;Choi, Min-Jae;Lim, Seong-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.658-663
    • /
    • 2018
  • Current measuring methods for air quality are based on ground measurement networks and satellite data. New methods of collecting evidence with advanced sensors are needed because current methods have limitations in collecting evidence for the illegal emission of air pollutants at narrow areas or specific sites. This study analyzed the possibility of using an ultraviolet hyperspectral sensor to measure the concentration of nitrogen dioxide and sulfur dioxide. Two types of spectra were used: simulated spectra for gases with various concentrations using a radiative transfer model and observed spectra for each gas for a concentration. To understand the possibility of using a hyperspectral sensor, the differences between the simulated spectra and the observed spectra were analyzed, and the variation of simulated spectra were then analyzed according to the concentration. The results showed good agreement between observed spectra and simulated spectra. In addition, the absorption depth at specific wavelengths in the simulated spectra had a very strong correlation with the gas concentration. The gas concentration could be estimated using the hyperspectral sensor. In the future, validation would be needed to estimate the gas concentration through observations of various concentrations of gases using a hyperspectral sensor.

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

Effect of Ethanol-gasoline Blending Ratio on Lean Combustion and Exhaust Emissions Characteristics in a SI Engine Fueled with Bioethanol (바이오에탄올 SI 엔진에서 에탄올-가솔린 연료 혼합비율에 따른 희박연소 및 배기 특성)

  • Yoon, Seung-Hyun;Kim, Dae-Sung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • Lean combustion and exhaust emission characteristics in a ethanol fueled spark-ignited engine according to ethanol-gasoline fuel blending ratio were investigated. The test engine was $1591cm^3$ and 10.5 of compression ratio SI engine with 4 cylinders. In addition, lambda sensor system was connected with universal ECU to control the lambda value which is varied from 1.0 to 1.5. The engine performance and lean combustion characteristics such as brake torque, cylinder pressure and rate of heat release were investigated according to ethanol-gasoline fuel blending ratio. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), nitrogen oxides ($NO_x$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque, cylinder pressure and the stability of engine operation were increased as ethanol blending ratio is increased. Brake specific fuel consumption (BSFC) was increased in higher ethanol blending ratio while brake specific energy consumption (BSEC) was decreased in higher ethanol blending ratio. The exhaust emissions were decreased as ethanol blending ratio is increased under overall experimental conditions, however, some specific exhaust emission characteristics were mainly influenced by lambda value and ethanol-gasoline fuel blending ratio.

Benefit Analysis of CNG as an Automobile Fuel (자동차연료로서 CNG의 경제성 분석)

  • Cho, Haeng-Muk;Mahmud, Md. Iqbal
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The adoption of compressed natural gas (CNG) as a vehicle fuel is a common phenomenon as it is accelerating worldwide. Increasing number of CNG driven vehicles around the world has jumped up from one million in 1996 to five million in 2006. CNG as a vehicle fuel is very popular to the end users because of its clean-burning properties and cost effective solution compared to other alternative fuels like diesel and gasoline. The use of CNG as a fuel reduces vehicular emission that is consisted of carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen ($NO_x$), carbon dioxide ($CO_2$) etc. This research highlights the characteristics of CNG vehicles, CNG arrangement in the vehicles, CNG fueling procedures and most importantly the environmental and economic factors that are highly considered as cost effective solution for the flexibility of using CNG in the automobiles.

Analysis on the Effects of Traffic Control Program on the Air Quality in Seoul (자동차 부제에 의한 서울 대기오염 저감 효과 분석)

  • Lee, Hyung-Min;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.498-506
    • /
    • 2007
  • To reduce the vehicular emissions of air pollutants, various traffic control programs (TCPs) have been used. In 2002, two TCPs have been implemented in Seoul and Busan, respectively. In this study, based on the study results on the effectiveness of the TCP in Seoul (Kim et al., 2005) and Busan (Lee et al., 2006), emission reduction by the TCP in Seoul was estimated and their contribution to the ambient air pollutants' concentrations was discussed. During the TCP period in 2002 at Seoul, emissions of air pollutants were reduced by 35% for CO and $NO_2$, 80% for HC, 23% for $PM_{10}$, and 24% for $SO_2$. Vehicular emission reduction affected the ambient concentrations significantly for $NO_2$. However, for $SO_2$, vehicular emission reduction did not affect the ambient concentration significantly. For $PM_{10}$, vehicular emission reduction did not affect the ambient concentration significantly if considering fugitive emissions.

Quality Change of Red Meat by Chlorine Dioxide Treatment during Storage (이산화염소 처리에 의한 적색육의 저장 중 품질변화)

  • Lee, Seung-Hwan;Shin, Hee-Young;Ku, Kyoung-Ju;Jin, You-Young;Jeon, So-Jeong;Chae, Hyeon-Seok;Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • The effects of chlorine dioxide ($ClO_2$) treatment on the quality changes of pork and beef were examined. Pork belly and beef tenderloin samples were treated with 30, 50, and 100 ppm of $ClO_2$ solution, respectively, and stored at $4{\pm}1^{\circ}C$. The $ClO_2$ treatment of pork and beef during storage decreased total aerobic bacteria, yeast, and mold counts with increasing concentration of $ClO_2$. The total aerobic bacterial counts for the pork belly treated at 100 ppm of $ClO_2$ increased from 1.48 log CFU/g immediately following treatment to 4.73 log CFU/g after 10 days, while the control increased from 2.19 log CFU/g to 6.22 log CFU/g. For the beef tenderloin, the total aerobic bacterial counts increased from 3.98 log CFU/g to 5.97 log CFU/g after 10 days, and a $ClO_2$ treatment at 100 ppm resulted in an increase from 3.13 log CFU/g to 4.73 log CFU/g. The pH and volatile basic nitrogen (VBN) values of the $ClO_2-treated$ pork and beef, as well as the control groups, increased during storage, and there were no significant changes among the treatments. The thiobarbituric acid reactive substance (TBARS) values of the $ClO_2-treated$ samples were slightly higher than those of the control. Sensory evaluation results showed that the pork and beef samples were not acceptable at day 8 and 6 of storage, respectively. These results indicate that $ClO_2$ treatment could be useful in improving microbial safety and quality of both pork and beef.