• 제목/요약/키워드: Nitrogen compounds

Search Result 888, Processing Time 0.029 seconds

Sitological Quality Evaluation of Cultured and Wild River Puffer, Takifugu obscurus (Abe) (양식산과 자연산 황복, Takifugu obscurus (Abe)의 식품학적 품질평가)

  • Kang, Hee-Woong;Shim, Kil-Bo;Kang, Duk-Young;Jo, Ki-Che;Song, Ki-Cheol;Lee, Jin-Ho;Song, Hong-In;Son, Sang-Gyu;Cho, Young-Je
    • Journal of Aquaculture
    • /
    • v.20 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • The present study was performed to evaluate sitological quality of the cultured and wild river puffer, Takifugu obscurus. Proximate composition, the content of extractive nitrogen, the content of nucleotides and their related compounds, total and free amino acid, and fatty acids were analysed and sensory evaluation in the muscle of the river puffer were compared. The cultured river puffer had a higher moisture content compared to the wild fish, while there was no significant difference in crude lipid, crude protein and ash contents. Nucleotides and their related compounds including ATP, ADP, AMP, IMP, HxR and Hx were detected. The result from analyzing ATP-related compound showed difference in total content by wild and cultured river puffer, and IMP content that had largest influence upon the savory taste of sliced raw fish, was higher in the cultured fishes than wild ones. Breaking strength level of the wild river puffer was higher than that of the cultured fish. High levels of C16:0 and C18:0 were shown in all samples and -3 polyunsaturated fatty acid content were not different between the cultured and wild river puffers (P>0.05). Total 17 amino acids were detected in the samples, and most of the samples had high contents of glutamic acid, aspartic acid, lysine and leucine and low contents of cystine, histidine, methionine and tyrosine. The result from surveying free amino acid content of wild and cultured river puffer showed difference in content, but generally taurine and lysine content for the whole free amino acid held the most part. There was no significant difference in texture, flavor and overall acceptance score between the cultured and wild fishes (P>0.05).

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

A Survey on Endocrine Disrupting Chemicals in Animal Wastes Treated with Methane Fermentation (메탄발효 처리된 가축분뇨내의 내분비계 장애물질에 대한 조사 연구)

  • Ko, H.J.;Kim, K.Y.;Kim, H.T.;Umeda, M.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.62-68
    • /
    • 2007
  • Concerns about endocrine disrupting chemicals emitted from humans and animals have been increased because these compounds are detected at very low levels in environment and adversely affect on indigenous fauna. To date, there is little information regarding the concentration of these compounds in animal wastes. In this study, the female hormones, $17\beta-estradiol$ (E2), estrone (E1) and estriol, were measured to provide baseline data in animal wastes. Samples were collected from animal waste storage, methane digester and sludge separated wastewater and analyzed by gas chromatography-mass spectrometry. To measure the mass ratios of estrogen to macronutrients, nitrogen and phosphorous were also determined. Sample collected from animal waste storage had the highest estrogen concentration (98.7 ${\mu}g/L$), while sludge separated wastewater had the lowest concentration (3.4 ${\mu}g/L$). The mean concentrations of E2 and E1 in waste storage sample were (6.8 ${\mu}g/L$) and (68.7 ${\mu}g/L$), respectively. In sludge separated wastewater, the mean concentration of both E2 and E1 were reduced to (2.6 ${\mu}g/L$) and (1.9 ${\mu}g/L$), respectively. However, estriol was not detected in any of the samples collected. Mean ratios of E2 and E1 to macronutrients were significantly different between the methane wastewater and sludge separated wastewater owing to elimination of solid particles.

Characteristics of Ammonia in Alkaline Stabilization Facility of Sludge from Sewage Treatment Plant (하수처리오니 알칼리 안정화 처리시설에서의 암모니아 발생특성)

  • Kim, Yong-Jun;Chung, David;Jeong, Mi-Jeong;Yoo, Hye-Young;Yoon, Cheol-Woo;Shin, Sun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.23-33
    • /
    • 2016
  • The characteristics of ammonia generated from alkaline stabilization facilities was investigated which are for organic sewage sludge from wastewater treatment plants. The highest concentration of ammonia was found in mixing and curing process in alkaline stabilization facility and ammonia mainly showed a range of 87.78 ppm($66.62mg/m^3$) to 1,933 ppm($1,467.01mg/m^3$) by detection tube. This is presumed to occur because nitrogen oxides are converted into ammonia as the sewage sludge is mixed with lime. In some facilities, hydrogen sulfide and methyl mercaptan were detected in relatively high concentrations, but odor materials except ammonia were not detected in most of the facilities. The concentration of ammonia caused by process was generally high in the order of "mixing > curing > output > storage > drying > input." It was found that odor compounds are removed by wet absorption using sulfuric acid and sodium hypochlorite in the 5 alkaline stabilization facilities currently in operation. Each facility was designed to meet the concentration of after-treatment emission in 1 ppm($0.76mg/m^3$), 50 ppm($37.95mg/m^3$) or 100 ppm($75.89mg/m^3$), but no facility satisfied the design standard for their emssion limit. In case of ammonia, some workplaces in alkaline stabilization facilities exceeded the exposure limits established by the Ministry of Labor. It appears that proper ventilation should be provided for the safety of workers in future. No odor compound including ammonia was found by detection tubes in the border of the facilities, but trace amounts of odor compounds are expected to exist, given the current operational status of facilities.

Trend and Further Research of Rice Quality Evaluation (쌀의 품질평가 현황과 금후 연구방향)

  • Son, Jong-Rok;Kim, Jae-Hyun;Lee, Jung-Il;Youn, Young-Hwan;Kim, Jae-Kyu;Hwang, Hung-Goo;Moon, Hun-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.33-54
    • /
    • 2002
  • Rice quality is much dependent on the pre-and post harvest management. There are many parameters which influence rice or cooked rice qualitys such as cultivars, climate, soil, harvest time, drying, milling, storage, safety, nutritive value, taste, marketing, eating, cooking conditions, and each nations' food culture. Thus, vice evaluation might not be carried out by only some parameters. Physicochemical evaluation of rice deals with amy-lose content, gelatinizing property, and its relation with taste. The amylose content of good vice in Korea is defined at 17 to 20%. Other parameters considered are as follows; ratio of protein body-1 per total protein amount in relation to taste, and oleic/linoleic acid ratio in relation to storage safety. The rice higher Mg/K ratio is considered as high quality. The optimum value is over 1.5 to 1.6. It was reported that the contents of oligosaccharide, glutamic acid or its derivatives and its proportionalities have high corelation with the taste of rice. Major aromatic compounds in rice have been known as hexanal, acetone, pentanal, butanal, octanal, and heptanal. Recently, it was found that muco-polysaccharides are solubilized during cooking. Cooked rice surface is coated by the muco-polysaccharide. The muco-polysaccharide aye contributing to the consistency and collecting free amino acids and vitamins. Thus, these parameters might be regarded as important items for quality and taste evaluation of rice. Ingredients of rice related with the taste are not confined to the total rice grain. In the internal kernel, starch is main component but nitrogen and mineral compounds are localized at the external kernel. The ingredients related with taste are contained in 91 to 86% part of the outside kernel. For safety that is considered an important evaluation item of rice quality, each residual tolerance limit for agricultural chemicals must be adopted in our country. During drying, rice quality can decline by the reasons of high drying temperature, overdrying, and rapid drying. These result in cracked grain or decolored kernel. Intrinsic enzymes react partially during the rice storage. Because of these enzymes, starch, lipid, or protein can be slowly degraded, resulting in the decline of appearance quality, occurrence of aging aroma, and increased hardness of cooked rice. Milling conditions concerned with quality are paddy quality, milling method, and milling machines. To produce high quality rice, head rice must contain over three fourths of the normal rice kernels, and broken, damaged, colored, and immature kernels must be eliminated. In addition to milling equipment, color sorter and length grader must be installed for the production of such rice. Head rice was examined using the 45 brand rices circulating in Korea, Japan, America, Australia, and China. It was found that the head rice rate of brand rice in our country was approximately 57.4% and 80-86% in foreign countries. In order to develop a rice quality evaluation system, evaluation of technics must be further developed : more detailed measure of qualities, search for taste-related components, creation and grade classification of quality evaluation factors at each management stage of treatment after harvest, evaluation of rice as food material as well as for rice cooking, and method development for simple evaluation and establishment of equation for palatability. On policy concerns, the following must be conducted : development of price discrimination in conformity to rice cultivar and grade under the basis of quality evaluation method, fixation of head rice branding, and introduction of low temperature circulation.

Assessment of Fertilizer Efficiency of Pharmaceutical Byproduct and Cosmetic Industry Wastewater Sludge as Raw Materials of Compost (제약업종 부산물 및 화장품 제조업 폐수처리오니의 비효검정)

  • Lim, Dong-Kyu;Kwon, Soon-Ik;Lee, Seung-Hwan;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.108-117
    • /
    • 2005
  • Pharmaceutical byproduct sludge and cosmetic industry wastewater sludge can be used as a raw material of compost. Effects of three types of pharmaceutical byproduct sludge and one type of cosmetic industry wastewater sludge on soil properties and red pepper growth were investigated in a field based concrete pot ($2{\times}2m$). These sludges and pig manure ($5Mg\;ha^{-1}$, dry basis) were incorporated into the upper of loam soil 30 days prior to transplanting red pepper. Changes in soil properties and contents of heavy metals and toxic organic compounds in soil and plant were measured. And also plant growth measurement and bioassay of soil phytotoxicity were included. Contents of heavy metals were increased in the soils treated with the sludges. Plant growth in the sludge treatments were mostly inferior to that of NPK treatment, especially in early stage. Content of N in plant was lower in all sludge treatments at early and middle growth stages, and it was especially caused by characteristics and concentration of nitrogen and organic matter of sludges. Total yield of red pepper was highest in the NPK treatment and followed by pharmaceutical sludge 3, pig manure, pharmaceutical sludge 1, and pharmaceutical sludge 2, and the yield of cosmetic sludge treatment was considerably lower than others. HEM and PAHs contents in soil of cosmetic sludge treatment were $4.80mg\;kg^{-1}$ and $2,263.2{\mu}g\;kg^{-1}$, respectively. Root elongation of lettuce exposed to the water extract of soil treated with cosmetic sludge was about 20% of that found in the test with soil extract of non fertilization treatment. At present, raw materials of compost were authorized according to the contents of organic matter, heavy metals and product processing. Toxic organic compounds analysis and bioassay would be helpful for authorization and assessment of suitability of raw materials of compost.

Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port (부산 북항에서의 선박 배출물질 현황과 선속제한에 의한 배출량 감소 연구)

  • Lee, Bo-Kyeong;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.572-580
    • /
    • 2019
  • In view of the numerous discussions on global environmental issues, policies have been implemented to limit emissions in the field of marine transport, which accounts for a major part of international trade. In this study, a ship's emissions were calculated by applying the engine load factor to determine the total quantity of emissions based on the ship's speed reduction. For ships entering and leaving the Busan North Port from 1 January to 31 December 2017, emissions were calculated and analyzed based on the ship's type and its speed in the reduced speed zone (RSZ), which was set to 20 nautical miles. The comparison of the total amount of emissions under all situations, such as cruising, maneuvering, and hotelling modes revealed that the vessels that generated the most emissions were container ships at 76.1 %, general cargo ships at 7.2 %, and passenger ships at 6.8 %. In the cruising and maneuvering modes, general cargo ships discharged a lesser amount of emission in comparison with passenger ships; however, in the hotelling mode, the general cargo ships discharged a larger amount of emission than passenger ships. The total emissions of nitrogen oxides (NOx), sulphur oxides (SOx), particulate matter (PM), and volatile organic compounds (VOC), were 49.4 %, 45 %, 4 %, and 1.6 %, respectively. Furthermore, the amounts of emission were compared when ships navigated at their average service speed, 12, 10, and 8 knots in the RSZ, respectively. At 12 knots, the reduction in emissions was more than that of the ships navigating at their average service speed by 39 % in NOx, 40 % in VOC, 42 % in PM, and 38 % in Sox. At 10 knots, the emission reductions were 52 %, 54 %, 56 %, and 50 % in NOx, VOC, PM, and Sox, respectively. At 8 knots, the emission reductions were 62 %, 64 %, 67 %, and 59 % in NOx, VOC, PM, and Sox, respectively. As a result, the emissions were ef ectively reduced when there was a reduction in the ship's speed. Therefore, it is necessary to consider limiting the speed of ships entering and leaving the port to decrease the total quantity of emissions.

Low Temperature Growth of MCN(M=Ti, Hf) Coating Layers by Plasma Enhanced MOCVD and Study on Their Characteristics (플라즈마 보조 유기금속 화학기상 증착법에 의한 MCN(M=Ti, Hf) 코팅막의 저온성장과 그들의 특성연구)

  • Boo, Jin-Hyo;Heo, Cheol-Ho;Cho, Yong-Ki;Yoon, Joo-Sun;Han, Jeon-G.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.563-575
    • /
    • 2006
  • Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.

Air Pollution and Its Effects on E.N.T. Field (대기오염과 이비인후과)

  • 박인용
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.6-7
    • /
    • 1972
  • The air pollutants can be classified into the irritant gas and the asphixation gas, and the irritant gas is closely related to the otorhinolaryngological diseases. The common irritant gases are nitrogen oxides, sulfur oxides, hydrogen carbon compounds, and the potent and irritating PAN (peroxy acyl nitrate) which is secondarily liberated from photosynthesis. Those gases adhers to the mucous membrane to result in ulceration and secondary infection due to their potent oxidizing power. 1. Sulfur dioxide gas Sulfur dioxide gas has the typical characteristics of the air pollutants. Because of its high solubility it gets easily absorbed in the respiratory tract, when the symptoms and signs by irritation become manifested initially and later the resistance in the respiratory tract brings central about pulmonary edema and respiratory paralysis of origin. Chronic exposure to the gas leads to rhinitis, pharyngitis, laryngitis, and olfactory or gustatory disturbances. 2. Carbon monoxide Toxicity of carbon monoxide is due to its deprivation of the oxygen carrying capacity of the hemoglobin. The degree of the carbon monoxide intoxication varies according to its concentration and the duration of inhalation. It starts with headache, vertigo, nausea, vomiting and tinnitus, which can progress to respiratory difficulty, muscular laxity, syncope, and coma leading to death. 3. Nitrogen dioxide Nitrogen dioxide causes respiratory disturbances by formation of methemoglobin. In acute poisoning, it can cause pulmonary congestion, pulmonary edema, bronchitis, and pneumonia due to its strong irritation on the eyes and the nose. In chronic poisoning, it causes chronic pulmonary fibrosis and pulmonary edema. 4. Ozone It has offending irritating odor, and causes dryness of na sopharyngolaryngeal mucosa, headache and depressed pulmonary function which may eventually lead to pulmonary congestion or edema. 5. Smog The most outstanding incident of the smog occurred in London from December 5 through 8, 1952, because of which the mortality of the respiratory diseases increased fourfold. The smog was thought to be due to the smoke produced by incomplete combustion and its byproduct the sulfur oxides, and the dust was thought to play the secondary role. In new sense, hazardous is the photochemical smog which is produced by combination of light energy and the hydrocarbons and oxidant in the air. The Yonsei University Institute for Environmental :pollution Research launched a project to determine the relationship between the pollution and the medical, ophthalmological and rhinopharyngological disorders. The students (469) of the "S" Technical School in the most heavily polluted area in Pusan (Uham Dong district) were compared with those (345) of "K" High School in the less polluted area. The investigated group had those with subjective symptoms twice as much as the control group, 22.6% (106) in investigated group and 11.3% (39) in the control group. Among those symptomatic students of the investigated group. There were 29 with respiratory symptoms (29%), 22 with eye symptoms (21%), 50 with stuffy nose and rhinorrhea (47%), and 5 with sore thorat (5%), which revealed that more than half the students (52%) had subjective symptoms of the rhinopharyngological aspects. Physical examination revealed that the investigated group had more number of students with signs than those of the control group by 10%, 180 (38.4%) versus 99 (28.8%). Among the preceding 180 students of the investigated group, there were 8 with eye diseases (44%), 1 with respiratory disease (0.6%), 97 with rhinitis (54%), and 74 with pharyngotonsillitis (41%) which means that 95% of them had rharygoical diseases. The preceding data revealed that the otolaryngological diseases are conspicuously outnumbered in the heavily polluted area, and that there must be very close relationship between the air pollution and the otolaryngological diseases, and the anti-pollution measure is urgently needed.

  • PDF

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.