• Title/Summary/Keyword: Nitrogen Gas Pressure

Search Result 393, Processing Time 0.028 seconds

Impulse Breakdown Characteristics of Nonuniform Field Gap in SF_6-N_2 Mixtures ($SF_6-N_2$혼합기체 중에서 불평등전계 갭의 임펄스 절연파괴 특성)

  • Lee, Bok-Hee;Lee, Kyoung-Ok;Kim, Jung-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.533-540
    • /
    • 2000
  • Lightning impulse $(1.2/44[\mus])$ and damped oscillating impulse $(Osc./44[\mus])$ : 0.83[MHz]) breakdown characteristics in sulphur-hexafluoride/nitrogen (SF6-N2) mixtures were investigated. The predischarge currents were observed to clarify the breakdown mechanism. th experiments were carried out under nonuniform electric fields disturbed by a needle-shaped protrusion whose length and diameter are 10[mm] and 1[mm] at total gas pressure up to 0.5[MPa] with nitrogen concentrations varying from 5 to 20[%] in the mixture. The electrical breakdowns of SF6-N2 mixtures for both the positive and negative polarities develop with steplike pulses in leader mechanism and the breakdown voltage -time (V-t) characteristics were affected by the space charge. The voltage-time curves for the negative oscillating impulse voltage were extended over the longer time range. The minimum breakdown voltages for the negative lightning and oscillating impulse voltage were higher than those for the positive ones. in particular the positive breakdown voltages were independent of the gas pressure.

  • PDF

The Study of Reaction Bonded Silicon Nitride Fabricated Under Static Nitrogen Pressure (일정 질소압에서 제조된 반응결합 질화규소에 관한 연구)

  • Choi, Myoung-Je;Roh, Tae-Wook;Park, Chan;Park, Dong-Soo;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.505-510
    • /
    • 2000
  • In this investigation, we fabricated RBSN (Reaction Bonded Silicon Nitride) using the static nitriding system which could be advantageous for commercialization. Firstly, Si compacts of different sizes were made, and then nitridation rates were investigated as a function of added static gas pressure. The reaction schedule was obtained by pre-experiments. In case of small samples, the variation of ${\alpha}$, ${\beta}$ phases between the inside and the outside region of the specimens was examined after the samples were nitrided under 1 bar and 1.5 bar reaction pressure. On the other hand, large samples of Si compact with the size of 36 mm for diameter and 23 mm for thickness were nitrided for 26 hours of the total nitridation time, which showed a complete and homogeneous nitriding reaction from the outside to the inside of the samples, although the time was considerably shorter than that needed for convertional nitridation. Nitridation rates obtained at the early stage of reaction were proportional to the reaction gas pressures. The sequences of the nitridation reaction with the thickness were as follows 1) the outside, 2) the inside and 3) the intermediate area of the specimen. These results wer eobtained from the coloration of cross sectioned specimens that had various nitridation rates. Total nitriding reaction kinetics was controlled by chemical reaction, not by diffusion of the nitrogen gas.

  • PDF

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens (디스크 시험 및 수소처리 인장시험에 의한 수소배관용 고질소 스테인리스강의 내수소취성 평가 연구)

  • Dong-won, Shin;Min-kyung, Lee;Jeong Hwan, Kim;Ho-seong, Seo;Jae-hun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.16-23
    • /
    • 2022
  • In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.

Feasibility Study of Pressure Letdown Energy Recovery from the Natural Gas Pressure Reduction Stations in South Korea (한국의 천연가스 도시정압기지에서 감압에너지 회수에 대한 타당성 연구)

  • Yoo, Han Bit;Hong, Seongho;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • Almost all of the natural gas consumed in South Korea is compressed into very high pressure for the transportation through the underground pipelines, then reduced in pressure regulation stations before delivery to the consumer. For pressure reduction, expansion valves have been used due to the simple and effective installation, but recover none of the energy in the gas during compression. Hence, turbo-expanders are proposed instead of the valves to accomplish the same pressure letdown function and recover some of the compression energy in the form of shaft work converting into electric powers. Here we have theoretically calculated the electric powers at the pressure reduction from 68.7 bar to 23 bar (which are the average values taken at the inlet and outlet points of the expansion valve in medium-pressure regulation stations) according to the inlet conditions of temperature and flow rate. The natural gas is considered as two cases of a pure methane and the mixture of hydrocarbons with a very small amount of nitrogen, and the Peng-Robinson equation of state is employed for the calculation of required thermodynamic properties. The electric energy is recovered as much as 1596 MW(methane) and 1567 MW(mixture) based on the total supply of natural gas in 2013.

Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion (고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성)

  • Park, Youngsoo;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine (디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

Preparation of AIN piezoelectric thin film for filters (필터용 AIN 압전 박막의 제작)

  • Keum Min-Jong;Kim Yeong-Cheol;Seo Hwa-Il;Kim Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.13-16
    • /
    • 2006
  • AIN thin films were prepared on amorphous glass and $SiO_2(1{\mu}m)/Si(100)$ substrate by the facing targets sputtering (FTS) apparatus, which can provide high density plasma, a high deposition rate at a low working gas pressure. The AIN thin films were deposited at a different nitrogen gas flow rate ($1.0{\sim}0.3$) and other sputtering parameters were fixed such as sputtering power of 200w, working pressures of 1mTorr and AIN thin film thickness of 800 nm, respectively. The thickness and crystallographic characteristics of AIN thin films as a function of $N_2$ gas flow rate $[N_2/(N_2+Ar)]$ were measured by $\alpha$-step and an X-ray diffraction (XRD) instrument. And the c-axis preferred orientations were evaluated by rocking curve. In the results, we could prepared the AIN thin film with c-axis preferred orientation of about $5^{\circ}$ on substrate temperature R.T. at nitrogen gas flow rate 0.7.

  • PDF

Vaporization Characteristics of Supercritical Hydrocarbon Fuel Droplet in Convective Nitrogen Environments (유동이 있는 초임계 질소 환경에서 탄화수소 연료 액적의 기화 특성)

  • Lim Jong-Hyuk;Lee Bong-Su;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1279-1287
    • /
    • 2004
  • The vaporization characteristics of a liquid heptane droplet in a supercritical nitrogen flow are numerically studied. The transient conservation equations of mass, momentum, energy, and species are expressed in an axisymmetric coordinate system. The governing equations are solved time marching method with preconditioning scheme. The modified Soave-Redlich-Kwong equation of state is employed for taking account of real gas effects such as thermodynamic non-ideality and transport anomaly. Changing the convective velocity and ambient pressure, several parametric studies are conducted. The numerical results show that the two parameters, Reynolds number and dimensionless combined parameter(${\mu}$s/${\mu}$d)(equation omitted), have influence on supercritical droplet vaporization.

Effect of Opening Pressure and Ambient Pressure on the Characteristics of Atomization in Early Stage of Diesel Spray (개변압 및 배압 변화가 디젤부문의 초기 미립화 특성에 미치는 영향)

  • 김종현;이봉수;이장희;구자예
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.56-62
    • /
    • 1999
  • The disintegration of transient diesel spray in early was investigated at different opening pressure and chamber pressure by measns of shadowgraph method using nanolite and still camera. Diesel spary was injected into the spray chamber which was charged with high pressure nitrogen gas. Atthe begining of injection, a liquid column that was almost the same diameter as the nozzle hole was observed . Spray tip penetration and spray angle were always increased with an increase in opening pressure.

  • PDF

Open-Loop Responses of Droplet Vaporization to Linear Normal Acoustic Modes

  • Kim, S.Y.;W.S. Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.155-164
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted, Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF