Browse > Article
http://dx.doi.org/10.3795/KSME-B.2004.28.10.1279

Vaporization Characteristics of Supercritical Hydrocarbon Fuel Droplet in Convective Nitrogen Environments  

Lim Jong-Hyuk (한국항공대학교 대학원 항공우주 및 기계공학과)
Lee Bong-Su (한국항공대학교 대학원 항공우주 및 기계공학과)
Koo Ja-Ye (한국항공대학교 항공우주 및 기계공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.28, no.10, 2004 , pp. 1279-1287 More about this Journal
Abstract
The vaporization characteristics of a liquid heptane droplet in a supercritical nitrogen flow are numerically studied. The transient conservation equations of mass, momentum, energy, and species are expressed in an axisymmetric coordinate system. The governing equations are solved time marching method with preconditioning scheme. The modified Soave-Redlich-Kwong equation of state is employed for taking account of real gas effects such as thermodynamic non-ideality and transport anomaly. Changing the convective velocity and ambient pressure, several parametric studies are conducted. The numerical results show that the two parameters, Reynolds number and dimensionless combined parameter(${\mu}$s/${\mu}$d)(equation omitted), have influence on supercritical droplet vaporization.
Keywords
Vaporization Characteristics; Real Gas Effect; Convective Velocity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Choi, Y. H. and Merkle, C. L., 1993, ' The Application of Viscous Flows,' Journal of Computational Physics, Vol. 105, pp. 207-223   DOI   ScienceOn
2 Graboski, M. S. and Daubert, T. E., 1978, 'A Modified Soave Equation of State for Phaes Equilibrium Calculation, 1. Hydrocarbon Systems,' Industrial and Engineering Chemistry Process Design. and Development, Vol. 17, No.4, pp. 443-448   DOI   ScienceOn
3 Magarvey, R. H. and Bishop, R. L., 1961, 'Transition Ranges for Three-Dimensional Wakes,' Canadian Journal of Physics, Vol. 39, pp. 1418-1422   DOI
4 Sakamoto, H. and Haniu, H., 1995, 'The Formation Mechanism and Shedding Frequency of Vortices from a Sphere in a Uniform Shear Flow,' Journal of Fluid Mechanics, Vol. 287, pp. 151-171   DOI   ScienceOn
5 Ormieres, D. and Provansal, M., 1999, 'Transition to Turbulence in the Wake of a Sphere,' Physical Review Letters, Vol. 83, pp. 80-83   DOI
6 Pilch, M. and Erdman, C. A., 1987, 'Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop,' International Journal of Multiphase Flow, Vol. 13, No.6, pp. 741-757   DOI   ScienceOn
7 Hsiang, L. P. and Faeth, G. M., 1992, 'Near-Limit Drop Deformation and Secondary Breakup,' International Journal of Multiphase Flow, Vol. 18, No.5, pp. 635-652   DOI   ScienceOn
8 Lee, K. J., Lee, B. S., Kim, J. H. and Koo, J. Y., 2003, 'Vaporization of Hydrocarbon Fuel Droplet in Supercritical Environments,' Journal of the Korean Society for Aeronautical and Space Science, Vol. 31, No.7. pp 85-93   과학기술학회마을   DOI
9 Ely, J. F. and Hanley, H. J., 1983, 'Prediction of Transport Properties. 2. Thermal Conductivity of Pure Fluids and Mixtures,' Industrial and Engineering Chemistry Fundamentals, Vol. 22, pp. 90-97   DOI
10 Takahashi, S., 1974, 'Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures,' Journal of Chemical Engineering(Japan), Vol. 7, No.6, pp. 417-420
11 Hua Meng, 2001, 'Liquid-Fuel Droplet Vaporization and Cluster Behavior at Supercritical Conditions,' Ph. D. thesis, The Pennsylvania State University
12 Hinze, J. O., 1995, 'Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes,' A. I. Ch. E. Journal, Vol. 1, No.3, pp. 289-295   DOI
13 Ranger, A. A. and Nicholls, J. A., 1969, 'Aerodynamic Shattering of Liquid Drops,' AIAA Journal, Vol. 7, No.2, pp. 285-290   DOI
14 Wierzba, A. and Takayama, K., 1988, 'Experimental Investigation of the Aerodynamic Breakup of Liquid Drops,' AIAA Journal, Vol. 26, No. 11, pp. 1329-1335   DOI   ScienceOn
15 Haywood, R. J., Nafziger, R. and Renksizbulut, M., 1989, 'A Detailed Examination of Gas and Liquid Phase Transient Processes in Convective Droplet Evaporation,' Journal of Heat Transfer, Vol. 111, pp. 495-502   DOI
16 Chiang, C. H., Raju, M. S. and Sirignano, W. A., 1992, 'Numerical Analysis of Convecting, Vaporizing Fuel Droplet with Variable Properties,' International Journal of Heat and Mass Transfer, Vol. 35 No.5, pp. 1307-1324   DOI   ScienceOn
17 Ely, J. F. and Hanley, H. J., 1981, 'Prediction of Transport Properties. 1. Viscosity of Fluids and Mixtures,' Industrial and Engineering Chemistry Fundamentals, Vol. 20, pp. 323-332   DOI
18 Deng, Z. T. and Jeng, S., 1992, 'Numerical Simulation of Droplet Deformation in Convective Flows,' AIAA Journal, Vol. 30, No.5, pp. 1290-1297   DOI
19 Hsiao, G. C., 1995, 'Supercritical Droplet Vaporization and Combustion in Quiescent and Forced-Convective Environments,' Ph. D. thesis, The Pennsylvania State University, University Park, PA.