• Title/Summary/Keyword: Nitrogen Gas Pressure

Search Result 393, Processing Time 0.021 seconds

The Study on Emission Spectrum Characteristics of Atmosphere Pressure Plasma (상압 플라즈마의 광 방출 스펙트럼 특성조사에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • In this study, we aimed to determine the optical properties of the plasma used for the dry cleaning method. The optical properties of the atmospheric pressure plasma device were measured through the degree of ionization of hydrogen or nitrogen gas by ionized atmospheric gas. The degree of ionization of hydrogen or nitrogen is closely associated with surface modification. We observed through our experiments that argon gas, an atmospheric gas, caused an increase in the ionization of nitrogen gas, which has similar ionization energy. This type of increase in nitrogen gas ions is believed to affect surface modification. The results of our study show that the pressure of argon gas and the partial pressure of argon and nitrogen gases lead to different results. This important result shows that argon ions can affect the ionization of nitrogen gas.

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

Effect of Nitrogen Gas Pressure on the Mechanical Properties of Polymer Composite Materials (고분자 복합재료의 기계적 물성에 미치는 질소기압의 영향)

  • Kim, Bu-An;Hwang, Hyun-Young;Kang, Suk-Jun;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.14-19
    • /
    • 2016
  • This study is about the effect of nitrogen gas pressures during manufacturing process on the mechanical properties of composite materials. $TiO_2$/epoxy resin nanocomposites and carbon fiber reinforced epoxy resin(CFRP) composites were fabricated under various nitrogen gas pressures. Tensile strength test, vicker's hardness test and fracture surface observation were carried out to investigate the effect of nitrogen gas pressure. As a result, the tensile strength of nanocomposite and CFRP composites showed clearly increasing tendency by a change in the nitrogen gas pressure up to 3.0 atm and then the tensile strength decreased a little. However, the vicker's hardness of $TiO_2$/epoxy nanocomposites showed same hardness values regardless of the nitrogen gas pressures.

Effect of Nitrogen Gas Pressure on the Property of TiN-Coated Layer of High Speed Steel by Arc ion Plating (AIP 법에서 질소가스 압력이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.124-130
    • /
    • 2008
  • The effect of nitrogen gas pressure in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured fur various nitrogen gas pressures. It has been shown that the nitrogen gas pressure has a considerable effect on the surface roughness, adhesion strength, atomic distribution of TiN, and surface deposition of TiN of the high speed steels but that it has little influence on the micro-hardness and coated thickness.

Breakdown Characteristics of Insulation Materials for a Termination of Power Transmission Class HTS Cable

  • Kwag Dong-Soon;Cheon Hyeon-Gweon;Choi Jae-Hyeong;Kim Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • A research on several characteristics such as volume breakdown and surface discharge of insulators for a termination of power transmission class HTS cable was performed. We investigated the surface discharge of glass fiber reinforced plastic (GFRP) under air, cryogenic nitrogen gas and nitrogen gas media. The breakdown characteristics of these media were studied. Experimental results revealed that flashover voltage greatly depends on pressure, temperature, the kinds of insulating media and voltages, but it is slightly affected by shape and material of electrode. The breakdown voltage of liquid nitrogen, cryogenic nitrogen gas and nitrogen gas deeply depends on the shape and dimension of electrode, kinds of voltages and pressure. Moreover, the breakdown voltage of cryogenic nitrogen gas and flashover voltage of GFRP in the cryogenic nitrogen gas is also influenced by temperature and vapour-mist density of the gas.

Preparation of New Corrosive Resistive Magnesium Coating Films (고내식성의 신 마그네슘 코팅막 제작)

  • Lee, Myeong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.103-113
    • /
    • 1996
  • The properties of the deposited film depend on the deposition condition and these, in turn depend critically on the morphology and crystal orientation of the films. Therefore, it is important to clarify the nucleation occurrence and growth stage of the morphology and orientation of the film affected by deposition parameters, e.g. the gas pressure and bias voltage etc. In this work, magnesium thin flims were prepared on cold-rolled steel substrates by a thermo-eletron activation ion plating technique. The influence of nitrogen gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. The diffraction peaks of magnesium film became less sharp and broadened with the increase of nitrogen gas pressure. With an increase in nitrogen gas pressure, flim morphology changed from colum nar to granular structure, and surface crystal grain-size decreased. The morphology of films depended not only on gas pressure but also on bias voltage, i.e., the effect of increasing bias voltage was similar to that of decreasing gas pressure. The effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. Magnesium, in general, has not a good corrosion resistance in all environments. However, these magnesium films prepared by changing nitrogen gas pressure showed good corrosion resistance. Among the films, magnesium films which exhibited granular structure had the highest corrosion resistance. The above phenomena can be explained by applying the effects of adsorption, occlusion and ion sputter of nitrogen gas.

  • PDF

HCD Ion Plating of Ti(C, N) Films for Cutting Tools (절삭공구용 Ti(C, N)피막의 HCD식 이온도금시 공정변수의 영향)

  • 강형호;고경현;안재환
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.143-148
    • /
    • 1994
  • Effects of process variables of HCD ion plating on the film composition of Ti(C, N) were analyzed. The mole ratio of carbon to nitrogen and that of non-metal to titanium in the film primarily depend on the partial pressure ratio of ($C-2H_2$/ $N_2$) and total reactive gas pressure, respectively. The amount of nonmetallic com-ponents increases in nonlinear fashion as the total gas pressure due to the different reactivity of $C-2H_2$ and $N_2$ gases with Ti. The nonmetallic components was saturated dwith nitrogen when the nitrogen gas was more than 60% of total reactive gas. These two process variables could be related systematically using the concept of effective pressure in which the difference of reactivity of each gas was normalized.

  • PDF

A Study on the Characteristics of Silicon Nanopowders Produced by Transferred Type Arc Plasma Apparatus (이송식 아크플라즈마 장치에 의해 제조된 실리콘 나노분말의 특성에 대한 연구)

  • Kan, Woo-Seop;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.909-917
    • /
    • 2021
  • This study was carried out experimentally on the production and properties of silicon nanopowders characteristics using a transferred type arc plasma apparatus. To investigate the properties of silicon nanopowder, the purity of argon gas(99.999%, 99.9%) and the partial pressure ratio of nitrogen gas(0~90%) were varied. The total pressure in chamber is 400Torr and the silicon chunk amount used as raw material is 300g. The power supplied to the cathode to generate arc plasma was 9~12kW/h, and the electrode was made of tungsten and graphite with a diameter of 13mm. The particle size, impurity elements and powder evaporation rate of the silicon powder were analyzed using the XRD, FE-SEM, TEM and electronic scale. According to the purity of argon gas, the silicon evaporation rate and the particle size were similar, and impurities were generated more in the case of 99.9% purity than 99.999%. When argon gas and nitrogen gas were mixed in the chamber, the silicon evaporation rate and particle size increased as the partial pressure ratio of nitrogen gas increased. In particular, when the partial pressure ratio of nitrogen gas was 80%, the silicon evaporation rate 80g/h, and the particle size was about 80~100nm.

A Study on the Cold Energy for Liquefied Nitrogen Gas and Cascade Refrigeration System (액화질소 초저온과 이원냉동 초저온 냉열의 비교 실험적 연구)

  • Kim, C.S.;Jang, H.S.;Jeong, H.M;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • This paper represents the cold energy for liquefied nitrogen gas and cascade refrigerator. In this study, the vaporizer of liquefied nitrogen gas has the fin coil tube type with the dimension of inside diameter of 10mm and outside diameter of 12mm. Also, the total length of vaporizer is 20,000mm. The main experimental parameters are the mean velocity in duct and the supplied flow-rates of liquefied nitrogen gas. For the cascade refrigeration system, the refrigerants are ethane(R 170) in the high pressure stage and R 22 in the low pressure stage.

  • PDF

Extinguishing of Oil Fire by Water Mist Suppression System Using Compressed Inert Gas (불활성 압축가스를 이용한 미세물분무 소화시스템의 유류화재 소화특성)

  • Shin, Chang-Sub;Jeon, Go-Un;Kim, Ki-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.109-114
    • /
    • 2010
  • Water mist fire suppression system is environmental system and needs a flange pump to jet water. In this research, high pressure Nitrogen cylinder is used as a pressurizing source instead of flange pump, and also we tried to find the possibility of using compressed Nitrogen as a fire suppression agent. As a result, it was possible to design water mist fire suppression system with Nitrogen cylinder and suppress oil fire effectively. With DK1.58 nozzle, the optimum Nitrogen pressure was 80bar and the pressure was stable during water mist spray. However, jet of Nitrogen was not effective fire suppression agent when it was dually used with water mist because water mist has blown away, and it is efficient way to use compressed Nitrogen as a pressurizing source only.