• Title/Summary/Keyword: Nitrification and Denitrification

Search Result 289, Processing Time 0.03 seconds

A Study on Degradation of Nitrogen Compounds by Biofilm Reactor Packed with Porous Media (다공성 담체를 이용한 생물막 반응조의 질소화합물 분해에 관한 연구)

  • Cho, Hae-Mi;Kim, So-Yeon;Yoon, Ji-Hyun;Han, Gee-Bong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.776-780
    • /
    • 2007
  • A biofilm reactor packed with porous media was investigated for nitrogen removal of synthetic wastewater. The effect of different loading rates on the nitrification was sustained to be steady state with stable efficiency of 50~60% in the range of $0.0083{\sim}0.017gNH_4-N/gMLVSS{\cdot}day$ of F/MN ratio and $1{\sim}2kgNH_4-N/m^3{\cdot}day$ of media volumetric loading rate. However, nitrification efficiency was rapidly decreased to 25~30% as F/MN ratio and media volumetric loading rate were increased to the range of $0.025{\sim}0.034gNH_4-N/gMLVSS{\cdot}day$ and $3{\sim}4kgNH_4-N/m^3{\cdot}day$, respectively. Also the consumption rate of alkalinity was higher under 8 hours of HRT than unter 6 hours of HRT. Accordingly the influent loading rate variation by detention time with influent flow influenced more on the nitrification efficiency than the influent loading rate variation by the influent concentration did. The temperature effect on the nitrification showed 25% higher in summer than in winter as the results reported by other researchers who reported that the nitrification efficiency in biofilm showed 20% increase from 55% to 75% when the temperature was raised from $20^{\circ}C$ to $25^{\circ}C$. Denitrification with sulfur-media showed 90% removal efficiency under steady-state with no effect from the increase of influent concentration and empty bed contact time (EBCT) change such as EBCT was decreased from 8.4 hr to 4.3 hr and $NO_3-N$ loading rate was changed within the range of $0.1{\sim}0.4kgNO^3-N/m^3{\cdot}day$. Accordingly Denitrification with sulfur-media is feasible for post denitrification at the concentration less than $80mgNO^3-N/L$.

The Nutrient Removal of Mixed Wastewater composed of Sewage and Stable Wastewater using SBR (SBR을 이용한 하수와 우사폐수로 구성된 혼합폐수의 영양소 제거)

  • 김홍태
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.617-623
    • /
    • 1999
  • This study was carried out to obtain the optimal operating parameter on organic matters and nutrient removal of mixed wastewater which was composed of sewage and stable wastewater using SBR. A laboratory scale SBR was operated with An/Ae(Anaerobic/Aerobic) ratio of 3/3, 2/4 and 4/2(3.5/2.5) at organic loading rate of 0.14 to 0.27 kgBOD/$m^3$/d. TCOD/SCOD ratio of mixed wastewater was 3, so the important operating factor depended upon the resolving the particulate parts of wastewater. Conclusions of this study were as follows: 1) For mixed wastewater, BOD and COD removal efficiencies were 93-96% and 85-89%, respectively. It was not related to each organic loading rate, whereas depended on An/Ae ratio. During Anarobic period, the amount of SCOD consumption was very little, because ICOD in influent was converted to SCOD by hydrolysis of insoluble matter. 2) T-N removal efficiencies of mixed wastewater were 55-62% for Exp. 1, 66-76% for Exp. 2, and 67-81% for Exp. 3, respectively. It was found that nitrification rate was increased according to organic concentration in influent increased. Therefore, the nitrification rate seemed to be achieved by heterotrophs. During anoxic period, denitrification rate depended on SCOD concentration in aerobic period and thus, was not resulted by endogenous denitrification. However, the amount of denitrification during anaerobic period were 3.5-14.1 mg/cycle, and that of BOD consumed were 10-40 mg/cycle. 3) For P removal of mixed wastewater, EBPR appeared only Mode 3($3^*$). It was found that the time in which ICOD was converted to VFA should be sufficient. For mode 3 in each Exp., P removal efficiencies were 74, 87, and 81%, respectively. But for 45-48 of COD/TP ratio in influent, P concentration in effluent was over 1 mg/L. It was caused to a large amount of ICOD in influent. However, as P concnetration in influent was increased, the amounts of P release and uptake were increased linearly.

  • PDF

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Effects of DO concentration on Simultaneous Nitrification and Denitrification(SND) in a Membrane Bioreactor(MBR) (MBR 단일 반응조에서 용존산소 농도에 따른 동시 질산화-탈질반응(SND)의 영향)

  • Park, Noh-Back;Choi, Woo-Yung;Yoon, Ae-Hwa;Jun, Hang-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.371-377
    • /
    • 2009
  • In this study, simultaneous nitrification and denitrification (SND) from synthetic wastewater were performed to evaluate dissolved oxygen(DO) effects on chemical oxygen demand(COD) and nitrogen removal in a single membarne bio-reactor(MBR). DO levels in MBR at Run 1, 2, and 3 were 1.9~2.2, 1.3~1.6, and 0.7~1.0 mg/L, respectively. Experimental results indicated that DO had an important factor to affect COD and total nitrogen(TN) removal. SND were able to be accomplished in the continuous-aeration MBR by controlling ambient DO concentration. It is postulated that, because of the oxygen diffusion limitation, an anoxic micro-zone was formed inside the flocs where the denitrification might occur. From the results of this study, 96% of COD could be removed at DO of 0.7mg/L. At run 2 72.92% of nitrogen was removed by the mechanisms of SND (7.75mg-TN/L in effluent). In this study, SND was successfully occurred in a MBR due to high MLSS that could help to form anoxic zone inside microbial floc at bulk DO concentrations of 1.3~1.6mg/L.

Nitrite Removal by Autotrophic Denitrification Using Sulfur Particles (황입자를 이용한 독립영양탈질에서의 아질산성질소 탈질 조건 탐색)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • Swine wastewater contains high amounts of organic matter and nutrients (nitrogen and phosphorus). The biological nitrogen removal can be achieved by nitrification and denitrification processes. Nitrification-denitrification can be performed via nitrite which is called as the short-cut process. This Short-cut process saves up to 25% of oxygen and 40% of external carbon during nitrification and denitrification. In this study, the batch tests were conducted to assess the different parameters for the nitrite sulfur utilizing denitrification, such as alkalinity, temperature, initial nitrite concentration, and dissolved oxygen. The experimental results showed that the nitrite removal efficiency of the reactor was found to be over 95% under the optimum condition ($30^{\circ}C$ and sufficient alkalinity). Autotrophic nitrate denitrification was inhibited at low alkalinity condition showing only 10% removal efficiency, while nitrite denitrification was achieved over 95%. The nitrite removal rates were found similar at both $20^{\circ}C$ and $30^{\circ}C$. In addition, nitrite removal efficiencies were inhibited by increasing oxygen concentration, but sulfate concentration increased due to sulfur oxidation under an aerobic condition. Sulfate production and alkalinity consumption were decreased with nitrite compared those with nitrate.

GPS-X Based Modeling on the Process of Gang-byeon Sewage Treatment Plant and Design of Recycle Water Treatment Process (GPS-X 기반 모델링에 의한 강변사업소 처리효율 분석 및 반류수 처리 공정 설계)

  • Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1493-1498
    • /
    • 2016
  • The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen ($NH_3{^+}-N$) was converted to nitrate nitrogen ($NO_3{^-}-N$). The concentrations of $NH_3{^+}-N$ and $NO_3{^-}-N$ were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than $10^{\circ}C$, the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.

Wastewater Treatment and Microbial Structure Analysis by Fluorescence In Situ Hydridizationin a Biofilm Reactor (생물막 반응키에서의 폐수 처리 및 Fluorescence In Situ Hybridization에 의한 복합 미생물계 구조 해석)

  • Kim, Dong-Jin;Han, Dong-Woo;Lee, Soo-Choul;Park, Byeong-Gon;Kwon, Il;Sung, Chang-Keun;Park, Wan-Cheol
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2002
  • Laboratory scale aerobicfanaerobic biofilm reactor was used for simultaneous and stable removal of organics, N and P components to investigate optimum design and operation parameters and to analyze the microbial distribution and consortium structure of nitrification and denitrification bacteria in aerobic and anaerobic biofilm systems. The biofilm reactor was successfully operated for 143 days to show $COD_{cr},\;BOD_5$, SS removal efficiencies of 88, 88, and 97%, respectively. During the experiment period, almost complete nitrification efficiency of 96% was achieved. Denitrification efficiency was about 45% without addition of any external carbon sources. In case of total phosphorus removal, 74% of the inlet phosphorus was removed. Fluorescence in situ hybridization (FISH) results showed that most of the ammonia oxidizing bacteria in the aerobic nitrification zone was found to be Nitrosomonas species while Nitrospira was the representative nitrite oxidizing bacteria. For the denitrification, Rhodobacter, Rhodovulum, Roseebacter and Paracouus were the dominant denitrification bacteria which was 10 to 20% of the total bacteria in numbers.

Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13 (Alcaligenes faecalis NS13에 의한 호기성 종속영양 질산화 및 탈질화)

  • Jung, Taeck-Kyung;Ra, Chang-Six;Joh, Ki-Seong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2016
  • In order to find an efficient bacterial strain that can carry out nitrification and denitrification simultaneously, we isolated many heterotrophic nitrifying bacteria from wastewater treatment plant. One of isolates NS13 showed high removal rate of ammonium and was identified as Alcaligenes faecalis by analysis of its 16S rDNA sequence, carbon source utilization and fatty acids composition. This bacterium could remove over 99% of ammonium in a heterotrophic medium containing 140 mg/L of ammonium at pH 6-9, $25-37^{\circ}C$ and 0-4% of salt concentrations within 2 days. It showed even higher ammonium removal at higher initial ammonium concentration in the medium. A. faecalis NS13 could also reduce nitrate and nitrous oxide by nitrate reductase and nitrous oxide reductase, respectively, which was confirmed by detection of nitrate reductase gene, napA, and nitrous oxide reducase gene, nosZ, by PCR. One of metabolic intermediate of denitrification, $N_2O$ was detected from headspace of bacterial culture. Based on analysis of all nitrogen compounds in the bacterial culture, 42.8% of initial nitrogen seemed to be lost as nitrogen gas, and 46.4% of nitrogen was assimilated into bacterial biomass which can be removed as sludge in treatment processes. This bacterium was speculated to perform heterotrophic nitrification and aerobic denitrification simultaneously, and may be utilized for N removal in wastewater treatment processes.

Change of Sludge Denitrification and Nitrification Rate according to the Operating Conditions in Advanced Wastewater Treatment Processes (하수고도처리공법의 유입하수량 변화에 따른 슬러지 질산화/탈질속도 변화)

  • Lee, Myoung-Eun;Oh, Jeongik;Park, No-Suk;Ko, Dae-Gon;Jang, Haenam;Ahn, Yongtae
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • The purpose of this study is to investigate the changes of sludge characteristics according to the changes of influent sewage flowrate in the advanced wastewater treatment processes including MBR, SBR, and $A_2O$. The ratio of the actual sewage flowrate to the design flowrate is decreased from 100% to 70, 40%, and 10%, and the specific denitrification rate and ammonia oxidation (nitrification) rate was measured. The specific nitrification rate of the sludge collected from the aeration tank of each process was measured at a similar value ($0.10gNH_4/gMLVSS/day$) in all three process under the condition of 100% of sewage flowrate. It has tended to decrease significantly as the sewage flowrate decreased from 70% to 40%. The specific denitrification rate was also decreased by ~50% as the sewage flowrate decreased. However, considering the total nitrogen concentration in the influent and the microbial concentration in the reactor, the changes in kinetic parameter did not affect overall nitrogen removal. Therefore, it can be concluded that stable nitrogen removal will be possible under low influent flowrate condition if the MLVSS concentration is kept high.

Reaction Characteristics of Piggery Wastewater for Biological Nutrient Removal (생물학적 영양염류 제거를 위한 돈사폐수의 반응 특성)

  • 한동준;류재근;임연택;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.44-56
    • /
    • 1998
  • This study was performed to investigate the reaction characteristics of piggery wastewater for biological nutrient removal. The reaction characteristics were discussed the fraction of organics, the behavior of nitrogen, nitrification, denitrification, and the behavior of phosphorus. The fraction of readily biodegradable soluble COD was 11-12 percent. The ammonia nitrogen was removed via stripping, nitrification, autotrophic cell synthesis, and heterotrophic cell synthesis. The removal percents by each step were 12.1%, 68.9%, 15.0%, and 4.0%, respectively. Nitrification inhibition of piggery wastewater was found to occur at an influent volumetric loading rate over 0.2 NH$_{3}$-N kg/m$^{3}$/d. Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent. The phosphorus removed was released in the form of ortho-p in the aerobic fixed biofilm reactor, it was caused by autooxidation. The synthesis and release of phosphorus were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was 0.023mgP$_{syn}$/mgCOD$_{rem}$. The phosphorus contents of the microorganism were 4.3-6.0% on a dry weight basis.

  • PDF