• Title/Summary/Keyword: Nitrification Rate

Search Result 265, Processing Time 0.031 seconds

Analysis of COD fraction and change of COD in nitritation reactor using various wastewater (다양한 하수를 대상으로 유기물 성상과 질산화 반응조 내 유기물 변화)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • In ASM model, organic matters are classified according to their characteristics and general classification into COD and BOD cannot satisfy conditions required by ASM. In this study, it was performed to study classification of organic matters required by ASM on the basis of microorganisms' respiration rate subject to wastewater and sludge treatment. As results of analysis of the organic matter's appearance, it was found that there were some differences in composition of organic matters between wastewaters. It is considered that it is an important characteristic of wastewater that should be understood in treating wastewater in each process. Therefore, it is considered that appearance of organic matters in each wastewater identified by this study will be used as important basic data for operation of municipal wastewater treatment plant. It was identified that SS was an important factor affecting nitrification through organic matter and ammonium nitrogen change analysis according to reaction time in the nitrification. It is considered that the nitrification has close relationship with choice of optimal retention time.

A Comparison of Nutrient Removal Characteristics between (AO)2 SBBR and A2O SBBR ((AO)2 SBBR과 A2O SBBR에서 영양염류 제거 특성 비교)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.444-450
    • /
    • 2006
  • This study was carried out to compare the performance of two types of sequencing batch biofilm reactors (SBBRs), anoxic-oxic-anoxic-oxic $(AO)_2$ SBBR and anoxic-oxic-anoxic $A_2O$ SBBR, on the biological nutrient removal. The TOC removal efficiency in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. At the 1st non-aeration period, the release of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR because of the high TOC removal. At the 1st aeration-period, the nitrification was not completed in $(AO)_2$ SBBR, however, it was completed in $A_2O$ SBBR and the nitrification rate in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. The release and uptake of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was much higher than in $(AO)_2$ SBBR. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBBRs. The break point in DO and pH curves at the aeration period coincided with the end of nitrification.

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Impact of Temperature and Alkalinity on Nitrogen Removal in the Start-up Period of Partial Nitrification in a Sequence Batch Reactor

  • Nguyen Van Tuyen;Tran Hung Thuan;Chu Xuan, Quang;Nhat Minh Dang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.541-547
    • /
    • 2023
  • The effect of temperature and influent alkalinity/ammonia (K/A) ratio on the start-up of the partial nitrification (PN) process for an activated sludge-based domestic wastewater treatment was studied. Two different sequence batch reactors (SBR) were operated at 26 ℃ and 32 ℃. The relationship between temperature and the concentration of free ammonia (FA) and free acid nitrite (FNA) was investigated. A stable PN process was achieved in the 32 ℃ reactor when the influent ammonium concentration was lower than 150 mg-N/L. In contrast, the PN process in the 26 ℃ reactor had a higher nitrite accumulation rate (NAR) and ammonium removal efficiency (ARE) when the influent ammonia concentration was increased to more than 150 mg-N/L. Then three different ranges of the K/A ratio were applied to an SBR reactor. In the K/A range of 2.48~1.65, the SBR reactor achieved the highest NAR ratio (75.78%). This ratio helps to achieve the appropriate level of alkalinity to maintain a stable pH and provide a sufficient amount of inorganic carbon source for the activity of microorganisms. At the same time, FA and FNA values also reached the threshold to inhibit nitrite-oxidizing bacteria (NOB) without a significant effect on ammonia-oxidizing bacteria (AOB). Results showed that the control of temperature and K/A ratio during the start-up period may be important in establishing a stable and steady PN process for the treatment of domestic wastewater.

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Development of a Rotating Biological Contactor(RBC) Process for the Advanced Wastewater Treatment (회전원판(回轉圓板) 생물막(生物膜) 공법(工法)을 이용한 하(下)·폐수(廢水)의 고도처리(高度處理) 공정(工程) 개발(開發))

  • Kim, Eung Ho;Park, Jae Lo;Yoon, Jung Ro
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 1994
  • This study was conducted to develop a new RBC process available for the effective removal of organic matters and nitrogen in sewage. The RBC process for the oxidation organic compounds and nitrification was designed to occur at the 1st-stage and next-stage RBC respectively. Then nitrified water was recycled to the denitrifying RBC located at the lower part of the 1st-stage RBC. Some results were summarized as follows. 1. The loading limitation was represented as $60g{\cdot}COD/gm^2/day$ in experiment of simultaneous removal of organic matter and nitrogen. The maxmum COD % removal was 85% at the load $35g{\cdot}COD/m^2/day$. 2. The $NO_3-N$ % removal was approximately 80% at the load $60g{\cdot}COD/m^2/day$ and the maximum $NO_3-N$ remaval rate was $3.9g{\cdot}COD/m^2/day$ and the overall C/N ratio of 11.0 as required to achive 80% of $NO_3-N$% removal. 3.$NO_3-N$ removal rate was rapidly decreased above the load $7g{\cdot}NH_4{^+}-N/m^2/day$ and the maximum $NO_3-N$ removal rate was $3.7g{\cdot}NO_3-N/m^2/day$. 4. Irrespective of the recycle ratio, the COD % removal at the system of 2-stage RBC unit was nearly constant as 89% while the maximum one in the 1st-stage unit was 77% in the case of 50% recycle. 5. The maximum COD % removal in the 3-stage RBC system was 93% while 1st-stage one being 80%, under the $NH_4{^+}-N$ load of $7.4g/m^2{\cdot}d$. Also maximum percentage of nitrification and denitrification was 69% and 41% respectively, under the same $NH_4{^+}-N$ load.

  • PDF

Advanced Wastewater Treatment of Low Concentration Ammonia Using the Immobilized Nitrifier Consortium (고정화 질화세균을 이용한 저농도 암모니아 폐수의 고도처리)

  • Lee, Jung-Hoon;Kim, Byong-Jin;Kim, Yong-Ha;Yi, Gyeong-Beom;Lim, Jun-Heok;Cheon, Jae-Kee;Suh, Kuen-Hack
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.763-768
    • /
    • 2002
  • This study was performed in the airlift bioreactor using the nitrifier consortium entrapped in polyvinyl alcohol(PVA) for removing low concentration total ammonia nitrogen(TAN). At the superficial air velocity of 0.83 cm/sec, TAN removal rate and removal efficiency was $316.6{\pm}7.2g/m^3{\cdot}day$ and $92.8{\pm}2.2%$ respectively. Removal rate was continuously increased with decreasing hydraulic residence time(HRT) from 0.5 hr to 0.05 hr, whereas removal efficiency decreased with decreasing HRT. The optimum temperature for nitrification was $30^{\circ}C$ at which removal efficiency was $95.5{\pm}1.5%$. Nitrification was effectively performed at low temperature, $10^{\circ}C$. In the pH range from 7 to 9 in the bioreactor, removal rate and removal efficiency was $310{\pm}10g/m^3{\cdot}day$ and $94{\pm}3%$ respectively.

The Influence of Some Soil-treated Herbicides on the Mineralization of Nitrogen Fertilizers II. In an upland soil (토양처리형 제초제가 질소비료의 무기화작용에 미치는 영향 II 밭 토양 조건)

  • Kim Moo Key
    • Korean journal of applied entomology
    • /
    • v.16 no.3 s.32
    • /
    • pp.149-154
    • /
    • 1977
  • Effect of Simazine(2-chloro-4,6-bis (ethylamino)-s-triazine), Nitrofen (2, 4-dichloro-4' -nitrodi­phenylether), Propanil (:3, 4-dichloropropionanilide), and Butachlor (2-chloro-2, 6-diethyl N-(buthoxy­menthyl) acetanilide on urea hydrolysis and subsequent nitrification was investigated in an upland soil incubated at $20\pm1^{\circ}C$. 1. All the herbicides tested had no effect on the hydrolysis of urea to ammonia at the recommended rates. Butachlor, at ten and fifty times the recommended rate, and Nitrofen, at fifty times the recommeded rate, depressed urea hydrolysis, resulting in reduction of ammonia. But the depressive effects were temporary, disappearing soon. Simazine and Propanil had no detrimental effect on urea decomposition at all the treated rates. 2. Also, all the chemicals tested had no effect on the nitrification process at the recommended rates. At higher concentrations of ten and fifty times the recommended rate Butachlor and Nitrofen inhibited the oxidation of nitrite, and propanil long inhibited the oxidation of ammonium to nitrite, but was inactive against nitrite oxidizer. These inhibitive effects of the chemicals, however, disappeared in the later period of incubation. Simazine had no effect on the nitrification process at all the treated rates. 3. The trend of change in soil pH of both the treated and untreated plots well reflected the change of soil nitrogen forms during incubation. No direct effect of the chemicals on soil pH was obserbed.

  • PDF

Study on Removal of DOC for Effluent from Nitrification and Denitrification Process with Zeolite by Combined Process of Coagulation and UF Membrane (제올라이트를 첨가한 질산화 탈질공정에서 응집과 UF공정을 이용한 처리수내 용존 유기물질 제거 연구)

  • Han, Jang Hyuk;Yoon, Tai Il;Cho, Kyung Chul;Song, Jea Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.537-546
    • /
    • 2005
  • This study was carried out to evaluate EPS and SMP variation of sludge and effluent in nitrification and denitrification process with zeolite addition, a possible reduction of effluent DOC by URC(Ultra Rapid Coagulation) process. As a biological wastewater treatment result, EPS formation of both aeration and anoxic sludges are not affect by SRT variation. However, EPS concentration of sludges is higher in aeration tank than in anoxic tank by 6~8 mg EPS/ g VSS. Linear relationship between SMP to DOC indicates that SMP of bulk solution contributes to most of the biological treatment effluent DOC. DOC and turbidity removal efficiency was more improved with URC process than in a conventional coagulation. For pretreatment of UF filtration DOC removal was advanced by URC process than only UF filtration.

Digestion of settleable solids from recirculating fish tank as nutrients source for the microalga Scenedesmus sp. cultivation

  • Rotthong, Maneechotiros;Chiemchaisri, Wilai;Tapaneeyaworawong, Paveena;Powtongsook, Sorawit
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.377-382
    • /
    • 2015
  • The high concentration of nitrogen and phosphorus in wastewater incorporated with the ability to use carbon dioxide as the carbon source make the microalgae become more attractive in wastewater treatment process. This study evaluates the optimal conditions for the digestion of settelable solids from the recirculating aquaculture system to produce the biomass of the green microalga Scenedesmus sp. After solids separation, aerobic digestion of settleable solids under disperse condition produced nitrate as the final product of consequently ammonification and nitrification processes. With the optimal digestion procedure, nitrate concentration during aerobic digestion in 2000 mL vessel increased from $9.63{\pm}0.65mg\;N/L$ to $58.66{\pm}0.06mg\;N/L$ in 10 days. Thereafter, cultivation of Scenedesmus sp. was performed in 1000 mL Duran bottle with air bubbling. The highest Scenedesmus sp. specific growth rate of $0.321{\pm}0.01/d$ was obtained in treatment using liquid fraction after aerobic digestion as the whole culture medium for Scenedesmus sp. cultivation. With this study, digestion of $8,800{\pm}128.12mg\;dry\;weight/L$ of settleable solids from fish pond finally produced $1,235{\pm}21mg\;dry\;weight/L$ of Scenedesmus sp. biomass.